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Abstract

In higher education, various assignment rules exist for pairing students

with course professors, ranging from simple random assignment approaches to

mechanisms that grant students considerable choice. How do these contribute

to learning and the efficient use of instruction inputs? This paper develops an

econometric framework to estimate student-professor match effects and uses the

framework to evaluate how students’ choice of instructors contributes to learning.

I extend the literature on teacher value-added by showing how to use sequences of

subject-related courses to semi-parametrically identify instructor-specific learning

production functions when instructors differ in grading policies and teaching

abilities. The framework accommodates endogenous course selection, course

dropout, and discrete scoring, all ubiquitous in higher education. Using

post-secondary academic records from a university in the Dominican Republic, I

estimate the model and document the existence of substantial student-professor

match effects. However, when allowed to choose, students do not always select

the instructor from whom they will learn the most; they place as much weight on

expected grades. Relative to the current assignment rule, assigning students to the

predicted learning-optimal instructor on average leads to a 4.87 percent increase in a

student’s academic achievement, a 5.54 percentage points reduction in the dropout

rate, and a decrease from 1.53 to 1.17 instances in the number of enrollments needed

for course completion.
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1 Introduction

Higher-education institutions employ various assignment rules for pairing students

with course professors, ranging from random approaches to course-enrollment mechanisms

offering students considerable choice. Despite aligning with some university objectives, the

impact of these assignment rules on learning outcomes remains unclear. This is especially

true for mechanisms relying on student choice, where results hinge on students’ preferences

for instructors’ characteristics. For example, students may choose course professors based

on expected learning, anticipated scores when grades serve a signaling role, or other

factors. Each of these can result in distinct student-professor assignments and, in the

presence of match effects, in different outcomes such as students’ learning achievements,

dropout rates, and the number of retakes required for completion of a course1.

This paper develops an econometric framework to measure match effects in higher

education learning technologies and applies it to analyzing policies that enhance learning

outcomes through student-professor reassignments. I overcame two primary challenges

faced by the education matching effects literature. First, as professors in higher education

differ in their grading policies, it is not possible to infer instruction quality from the

observed within-professor variation of scores, as is common in the elementary and

secondary education literature. Second, since in many instances students can select into

courses, understanding the learning outcomes of choice-based assignment rules requires

modeling how students’ preferences for instructors interact with the assignment rules to

generate a matching. Using academic records from the Instituto Tecnológico de Santo

Domingo (INTEC), a university in the Dominican Republic, I estimate professor-specific

learning production functions for calculus instructors and quantify students’ preferences

for the learning and score outcomes attained under each professor. Although the estimates

reveal significant match effects, students do not consistently choose their learning-optimal

instructor when allowed to choose; they place as much weight on expected scores.

Counterfactual simulations show that reassigning students to professors can lead to

significant gains in students’ learning outcomes.

Various institutional features of INTEC guide my approach. For instance, students

commit to a major upon enrollment, which requires them to follow a rigid collection of

subject-related sequences of courses. This means students decide on the section within

a course rather than choosing among various courses, simplifying the modeling of an

otherwise complex course selection problem. Furthermore, concentrating on INTEC’s

Calculus sequence holds empirical advantages. First, as a predominantly STEM-focused

institution, nearly all students enroll in courses of the sequence. Second, the standardized

1Reducing dropout and retake rates are deemed as essential goals in education policy debates, for
reasons that go beyond their relationship to underlying learning. For example, high dropout rates delay
a student’s entry into the labor market. They have also been associated with decreases in the likelihood
of degree completion.
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nature of the syllabus suggests variations in teaching quality are primarily vertical rather

than horizontal. Third, the standalone nature of Calculus courses, mostly isolated

from other math-intensive courses, mitigates concerns about interference from parallel

learning. Lastly, students commence enrolling in the Calculus sequence in their initial

term, ensuring no learning occurs between my measurement of pre-enrollment student

characteristics and the sequence’s initial enrollment. On the demand side, students’

characteristics predict their demand decisions when allowed to choose. For example,

Calculus 2 instructors differ in their distribution of students’ initial ability, as measured

by a student’s score in the math component of the entrance exam score, suggesting that

(when choice is allowed) students select into sections based on functions of their ability.

Central to the arguments in the paper is the significant variation in the score returns

to a student’s ability across instructors, consistent with matching effects in the learning

technology. By itself, this observation cannot be taken as hard evidence for learning

match effects, as variation in, for example, Calculus 1 score returns to ability could result

from differences in instructors’ grading policies rather than differences in their teaching

quality. However, similar conclusions emerge when examining Calculus 2 score returns to

ability for students who differ in their Calculus 1 instructor match but share a common

Calculus 2 professor. As Calculus 2 scores are affected by Calculus 1’s learning but not

by its grading policies, at least part of the variation can be attributed to differences in

Calculus 1 instructors’ teaching quality2.

To explain these observations, I construct a structural model describing students’

learning outcomes along a sequence of subject-related courses in a post-secondary

institution. The framework comprises two primary blocks. First, Section 5.1 introduces

a model for the learning production function, describing learning outcomes and the

scores they induce, taking student-professor matches as given. A student’s ability is

understood as endogenously evolving based on a student’s learning along the sequence.

The analysis extends the teacher value-added literature by modeling instructor-specific

learning production functions in contexts where professors differ not just in teaching

quality but also in grading policies (e.g., for early contributions, consider Hanushek (1971),

Rockoff (2004), and Rivkin et al. (2005)). Additionally, it accommodates the possibility of

students dropping sections of a course and accounts for the discrete nature of the reported

scores, all standard factors in post-secondary environments.

While this model for the learning technology suffices for constructing counterfactual

reassignment simulations, comprehending the reasons behind potential inefficiencies in

the observed matches necessitates modeling the assignment rules guiding how students

and professors are paired. The second component of the model, outlined in Section 5.2,

delineates the assignment rules employed by INTEC. Initially, first-term students are

2Key to this observation is the fact that Calculus 1 and Calculus 2 are conceptually related. In other
words, learning Calculus 1’s material predicts a student’s performance in Calculus 2

3



randomly matched to course sections. All remaining students must select sections of

a course by engaging in a first-come-first-served course-enrollment mechanism through

a platform accessible each academic term, offering access to available sections within a

course. Sections are subject to capacity constraints, restricting students from selecting

sections with available slots upon platform entry. I model students’ decisions based on

their preferences for section attributes, including the associated professor’s teaching ability

and grading policies. The framework extends models used to study the effects of grading

policies on students’ decisions by considering the decision over sections/instructors within

a course, as opposed to students’ decisions over major programs, courses, or study effort

(i.e., examples are Ahn et al. (2019) and Babcock (2010)). Additionally, it explicitly

separates learning from scores, allowing me to structurally study how grading policies

and students’ choices directly affect learning as opposed to other related quantities.

Section 6 presents the empirical model, outlining the key distributional assumptions

guiding the estimation exercise. I parameterize learning production functions and specify

learning inputs, primarily focusing on a student’s ability level. By allowing variation in

production function intercepts, ability slopes, and ability exponents across instructors, the

model accommodates a rich class of learning technologies encompassing multiple match

effect patterns3. On the demand side, students are assumed to select into sections based

on their unobserved learning and scoring expected outcomes, with their preferences being

represented by utility functions parameterized in terms of the marginal utility of each of

these concerns. Given these preferences and the equilibrium disutility of participating in

the course-enrollment mechanism, students decide when to enter the platform and which

instructor to choose among those available upon entry. Utility section-term fixed effects

capture additional factors influencing demand decisions, including section schedule and

instructor attributes unrelated to the learning/scoring outcomes.

Methodologically, the main conceptual challenge is disentangling instructors’ teaching

abilities and grading policies from the observed distribution of scores. Proposition 6,

the main conceptual result of the paper, shows how to achieve this by using sequences

of subject-related courses, standard in post-secondary curricula. To illustrate, consider

comparing the teaching quality of two Calculus 1 professors. Under uniform grading

policies, a straightforward thought experiment shows a way to proceed: (i) pair two

students with identical histories to each instructor, and (ii) assess the instructors based

on their students’ Calculus 1 scores. Indeed, this approach is common in the literature

focusing on elementary and secondary education settings where standardized tests are

available (e.g., see, for example, Ahn et al. (2019), which considers matching effects

in settings other than higher education). However, it is invalid under heterogeneity in

grading policies as variations in scores may stem from differences in teaching abilities or

3Under my parameterization, two instructor parameters interact with a student’s ability in the
production functions. This leads to efficient assignments taking forms that go beyond positive/negative
sorting.
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grading policies. Subject-related course sequences offer a solution. Intuitively, a student’s

performance in a subsequent course is influenced by the learning of the current course,

not the grading policies of present instructors. Regarding the experiment, I can assign

both students to a common Calculus 2 instructor and use the difference in the resulting

Calculus 2 scores to infer teaching ability differences among the Calculus 1 professors.

In terms of the demand model, the primary challenge arises from the absence of

observed entry times for students participating in INTEC’s course-enrollment mechanism.

Because a student’s entry time determines its choice set at equilibrium, I cannot observe

the set of available sections from which a student makes a demand decision. The classical

identification problems resulting when preferences and choice sets are both unobserved

follow. In Proposition 4, I discuss how reinterpreting the student’s section demand model

from an ex-ante perspective can address this problem. Intuitively, I can think of the

decisions faced by a student seeking to enroll in a section of a course in terms of (i)

the student chooses a section among all the sections available (the full choice set), (ii)

the student chooses to enter the platform in a utility-maximizing manner conditional on

ensuring availability of a slot in the section previously chosen. This interpretation differs

from the ex-post perspective, where the student enters the platform first and then selects

an instructor from the following restricted choice set. Although both versions of the

demand model are behaviorally equivalent, the former corresponds to a straightforward

discrete choice random utility model, where all students face the full choice set. Although

not all primitives of the demand model can be identified under the reinterpreted model,

I show that students’ marginal utility for learning and scores can be inferred.

Employing the estimates, I explore how two classes of assignment rules employed by

INTEC can generate learning-efficient assignments: (i) random assignment rules and (ii)

first-come-first-served assignment rules. Using the second mechanism, I propose a novel

channel through which heterogeneity in grading policies can affect learning outcomes for

assignment rules relying on choice. In essence, given the signaling value of course scores

in post-secondary education, a student’s participation in a choice-based course-enrollment

mechanism is likely to reflect a preference for attaining high scores alongside a concern

for learning. If high-learning instructors do not coincide with high-scoring professors, the

mechanism can produce inefficient matches from a learning standpoint.

The empirical exercise reveals substantial match effects within the learning

technology with important implications for students’ learning and scoring outcomes. For

instance, students might encounter score differences equivalent to more than a full letter

grade between the best and worst potential matches with professors. Additionally, the

estimates show non-trivial variation in instructors’ grading policies, particularly in the

marginal score return related to learning. Importantly, high-learning instructors do not

always coincide with high-scoring professors. On the demand side, estimates show that

students have strong preferences for the scores they anticipate from an instructor match,
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equal in magnitude to their learning concerns and large relative to preferences over other

section-instructor attributes.

For each observed course-enrollment instance, I compute the predicted number

of professors delivering better scoring outcomes than the learning-optimal professor.

Among all course-enrollment instances, approximately 87% of students can find at least

one score-improving professor deviation, with a significant fraction of students facing

multiple opportunities (i.e., approximately 44% of students face more than five potential

deviations). These result in substantial score gains, with the average score gap between the

scoring-optimal instructor and the learning-optimal instructor among students actively

demanding a section corresponding to 1.12 points on the GPA scale. The latter, together

with estimates on students’ preferences, suggests a learning vs. score tension whose

resolution is implied by the fact that a substantial amount of students choosing a section

under the observed current assignment rule end up matched with an instructor other

than the predicted learning-optimal one (i.e., 80.75% for students who participate in the

first-come-first-served mechanism), suggesting room for gains via reassignments.

Counterfactual simulations of policies seeking to reassign students to professors show

the magnitude of these gains. Although all considered policies coincide in the objective to

maximize a weighted sum of average learning output, they differ in the weight placed over

students with different ability levels to capture distributional considerations. All policies

result in substantial learning gains: an average 4.87% increase in learning outcomes, a

5.54-percentage-point drop in section withdrawal rates, and a decrease from 1.53 to 1.17

instances in the average number of enrollments needed for course completion. Importantly,

although varying in magnitude, the gains are positive throughout the entire distribution of

student ability, implying the possibility of improving match efficiency without sacrificing

distributional goals regarding learning.

The rest of this paper is structured as follows. Section 2 positions the paper’s

contributions within the literature. Sections 3 and 4 introduce the empirical setting,

highlighting key stylized facts crucial for constructing the empirical model. Section 5

presents the conceptual model, discussing both the learning production function and the

model for section demand within a course. Section 6 introduces the empirical model

and outlines the identification arguments for the primitives of interest. Section 7 details

the model estimates and discusses their implications for the observed assignment rule.

Section 8 examines the outcomes of counterfactual reassignment policies. Finally, Section

9 concludes and suggests potential avenues for future research.
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2 Related Literature

This project contributes to an extensive body of research studying heterogeneity

in instructors’ teaching quality. Within this group, much work has taken place under

the value-added framework. Some early contributions include Hanushek (1971), Rockoff

(2004), Rivkin et al. (2005), and Hanushek (2009). These are primarily empirical

projects emphasizing teacher quality measures to guide hiring, promotion, and dismissal

decisions in education settings. They document substantial disparities among instructors’

teaching quality and gains from policies that act on such differences. In terms of recent

conceptual and methodological contributions, consider Kane & Staiger (2008), Chetty et

al. (2014),Gilraine et al. (2020), and Gilraine & Pope (2021).

Common to these papers is the assumption that learning production functions

additively separate student and professor inputs. This modeling decision, stemming

from a focus on describing differences in the average teaching quality across instructors,

is reasonable given the policy questions these papers seek to answer. However, it

is inadequate for studying assignment problems since, under separability, aggregate

learning outcomes are independent of how instructors and students are matched.

Recent value-added examples exploring the existence of matching effects in the learning

technology can be found in Aucejo et al. (2018), Ahn et al. (2020), and Graham et al.

(2022). Although these projects concern matching effects in the learning technology, they

differ from this paper in several important ways.

The most obvious is my focus on higher-education settings. This distinction is

significant because the structural differences between higher-education settings and other

learning environments rule out any simple extrapolation of the conclusions derived

from estimates based on the latter. Instead, these call for different modeling and

econometric approaches. Examples of these differences include the heterogeneity in

the grading policies used by professors to map learning into scores, the fact that only

discrete scores are reported (i.e., letter scores), and the truncation in the distribution

of scores resulting from students being able to drop sections of a course. Relative to

value-added papers considering matching effects, the approach proposed here allows for

richer forms of complementarities beyond the multiplicative separability used in many of

these contributions: the only requirement is for the professor-specific learning production

functions to be injective relative to its inputs.

More critical are the methodological differences in the identification of the matching

effects. In particular, I show how the within-professor variations in the score distribution,

used in elementary and secondary settings to identify learning technologies, cannot be

used in higher-education settings where instructors differ in grading policies. Intuitively,

high scores under an instructor can result from either high-quality teaching or a lenient
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grading policy. I provide arguments for disentangling both based on observing students

in multiple periods along a sequence of subject-related courses. The approach is broad

in that it can be applied to a large class of post-secondary institutions and is structural,

facilitating the evaluation of counterfactual policies.

The spirit of the identification argument is similar to that in Carrell & West (2010),

which considers grades in future courses as the normalization defining learning. However,

their concern is not one of confounding grading policies and learning, as their setting

involves standardized tests. Instead, it is about distinguishing between instructors who

“teach to the test” and those who have a lasting learning impact on students. The

reduced form approach followed by this contribution allows for testing the hypothesis of

pedagogical differences across instructors in a post-secondary education institution but

does not lend itself to counterfactual analysis. Moreover, using the empirical arguments

requires a setting with standardized testing and random assignment of students to

professors, an uncommon situation in most higher-education institutions.

A second branch of the education literature related to this project has focused on

understanding the consequences of differences in the grading policies across instructors

on students’ decisions within the university. Some recent examples are Ahn et al. (2019)

and Butcher et al. (2014), focusing on students’ decisions regarding major choices and

how grading policies impact these decisions. Another example, Babcock (2010), focuses

on student effort decisions within the course as an optimal response to how grading

policies affect the marginal returns to studying for students who value scores as an output.

Like these papers, I adopt the perspective of grading policies potentially impacting

student decisions. However, the nature of the decisions considered here is very different.

Specifically, I propose a new channel through which heterogeneity of grading policies

can affect learning indirectly by modifying students’ course/section demand decisions

and, therefore, the resulting assignment. This must be contrasted with the emphasis on

describing distortions resulting from students’ choices of major, courses, and effort levels

followed by these contributions.

Although related, these are conceptually very different. For instance, even without

matching effects in the learning technology, major and course choice distortions might arise

if grading policy differences exist across courses or departments. Conversely, distortions

in the assignment of students to professors within a course can occur even in environments

where students have little control over their major or course requirements (as is the case

in my empirical setting after the initial enrollment). Furthermore, the focus on matching

effects, which requires directly modeling the production technology, places this project at

the intersection between the literature studying the impact of heterogeneity in instructors’

grading policies and the literature concerned with quantifying real learning differences

across instructors mentioned above. Recent examples that also directly model the learning

technology are Gershenson et al. (2022) and Figlio & Lucas (2004), documenting real

8



learning consequences of grading policies professors adopt. However, these papers focus

again on elementary and secondary settings under technologies that don’t factor in

student-professor complementarities.

Finally, this project can be related to the literature studying assignment mechanisms,

particularly those concerned with course allocation problems. Although most of the papers

here are theoretical, I share the concern of considering course-enrollment mechanisms

that the university can directly choose to achieve different objectives. Some examples

directly addressing the assignment problem in educational settings are Diebold et al.

(2014), Krishna & Ünver (2008), and Sönmez & Ünver (2010).

One main difference with these papers is that the focus is almost exclusively on

comparing allocation mechanisms under preference-based criteria. For example, the

idea is very often to set up rules that lead to a student/course assignment satisfying

notions of efficiency, fairness, and stability regarding students’ preferences. This approach,

while reasonable, is not the only one. One can easily entertain ranking the assignment

mechanisms regarding the learning outputs they induce. Indeed, learning considerations

are very often the stated goals guiding universities’ decisions. The approach pursued here

also differs in that instead of considering the construction of mechanisms satisfying specific

properties, I compare existing mechanisms by using the estimates for the primitives in the

model. An exception to the latter is Budish & Cantillon (2012), which considers, under

a preference-based approach, the comparison of course-enrollment mechanisms used in a

concrete empirical setting.

3 Institutional Background and Data

Section 3.1 outlines INTEC’s organizational rules governing students’ outcomes and

decisions along the Calculus sequence considered. Section 3.2 provides formal definitions

for the variables considered in the empirical exercise, particularly those linked to a

student’s learning outcomes and course enrollment choices.

3.1 Institutional Background

INTEC is a medium-sized university for the Dominican Republic standard,

accommodating an average student body of approximately 5,697 students per academic

term. The organization of learning aligns with standard higher-education norms:

(i) completing a major program requires specific courses, (ii) related courses have

prerequisites or corequisites, and (iii) grading employs a continuous scoring system,

reflected in letter grades and a 4.0-based GPA on transcripts. However, three distinct
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aspects distinguish it from other post-secondary settings. While not crucial for

the subsequent arguments, these aspects influence my modeling decisions and merit

discussion.

First, at INTEC, students must select a major upon enrollment, committing to a

predetermined sequence of courses known as the major’s pensum for program completion.

Notably, the pensum dictates the specific courses and their order for enrollment, offering

students flexibility only within the specified course sections. This contrasts sharply with

the North American higher-education model, where students have considerable flexibility

in the courses they enroll in to fulfill the requirements of a major program.

Second, there are indications pointing to an absolute scoring system at INTEC

rather than a relative one. For instance, professors don’t face university-mandated target

score distributions, and there’s a lack of strong incentives for implicitly coordinating

around one. This reflects an institutional culture where professors hold considerable

autonomy in assessing student learning and where the score distribution within a section

is perceived to convey meaning beyond just the rank order of students. Later sections

in this paper present evidence ruling out some other forms of relative grading policies.

For example, score distributions for specific professors shift over time, indicating a

lack of professor-specific target distribution. Furthermore, variations exist in section

statistics—like mean and variance—under a particular instructor. This suggests that

professors don’t aim to target simpler statistics instead of the entire distribution of letter

scores.

Lastly, INTEC employs an assignment rule that combines random allocations and

choice-based selection. Initially, first-term students are randomly assigned to course

sections. Subsequently, all other students utilize a first-come-first-served mechanism to

choose sections within a course. Operationally, an online platform opens each term at

a specified time, displaying all available sections. Students access the platform to select

sections of the courses they seek to enroll in. Importantly, sections are subject to capacity

constraints, so students may be unable to enroll in a specific section if its capacity is met

by the time they access the platform4.

My analysis focuses on INTEC’s first two courses along the Calculus sequence:

Calculus 1 and Calculus 25. Several empirical advantages result from this choice. First,

most students enroll in STEM programs, and consequently, many students are observed

enrolling in these courses. Second, almost no differences exist in the course syllabus across

instructors. This is ideal, given my interest in measuring vertical teaching differences

4INTEC guarantees that the overall number of slots in a course exceeds the total demand. Thus,
while students might risk not enrolling in a specific section, they don’t risk finding any available slot for
a given course.

5Calculus 1 covers pre-calculus topics, emphasizing algebra and analytical geometry. Calculus 2 is a
standard first course in differential Calculus.
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across instructors (i.e., teaching quality) instead of horizontal differences. Thirdly, as

Calculus serves as a foundational course for many other subjects, these courses are

typically taken in isolation from other math-intensive subjects, minimizing concerns

about interference bias from students learning Calculus material from instructors in

other math-related courses. Finally, students begin enrolling in Calculus courses in their

first academic term, implying no learning between my measurement of pre-enrollment

learning-related variables and the beginning of the course enrollment along the sequence.

This allows for the use of pre-enrollment variables, in particular a student’s initial ability,

to accurately describe his understanding of the Calculus material before enrolling in the

first course in the sequence.

3.2 Variable Definitions

INTEC’s academic records can be categorized in terms of three groups. First I observe

student-level variables related to learning. The second set contains course outcomes for

each course-enrollment instance observed in the data. For each instance I observe whether

the student chooses to complete the section or if instead the student chooses to dropout.

The third component describes the conditions under which a section of a course is offered

including both information specific to the section and information corresponding to the

instructor leading the section. Below is a description of the main variables and definitions

used in subsequent sections.

Academic term.— INTEC’s academic calendar is divided into four terms within each

year. Each term is structured in terms of ten weeks of lecturing and two weeks for

evaluations. The observed sample spans academic terms between 2007 to 2022 of which

I use academic terms between 2011 and 2022 for the estimation exercises.

Student initial ability.— A student’s initial ability is measured as its score on

INTEC’s entrance math exam, the “Prueba de Aptitud Académica” (PAA). This is a

college board designed test used to asses a student’s understanding of the prerequisites

for first year undergraduate courses. Scores, initially ranging from 0 to 800, are scaled

down to a 0 to 4 scale (i.e., so that they agree with the range used by INTEC to report

course GPAs). The average score in the exam under the normalization is 2.82 with a

standard deviation of 0.54.

Student covariates.— Student pre-enrollment variables, recognized in the education

literature as potential predictors for learning, are observed in the data. Both a student’s

sex and chosen major are observed. Major programs are classified into four subject areas,

closely mirroring INTEC’s own departmental divisions: (i) STEM, (ii) business and social

sciences, (iii) health sciences, and (iv) others.
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Instructor covariates.— I create dummy variables to categorize instructors in

a given academic term as either being below or above the median regarding various

learning-related metrics. Three dimensions are considered. The teaching load variable

captures the total number of sections taught by a professor in the current academic term,

irrespective of the course. General tenure captures the overall tenure of an instructor at

the university in terms of the total number of academic terms the instructor has been

active prior to the term being considered. Lastly, the course-specific tenure variable

distinguishes between an instructor’s overall teaching experience and its experience

teaching a specific course in the Calculus sequence. The measure mirrors general tenure

but only accounts for the previous academic terms in which the instructor has taught the

specific course under consideration.

Course scores.— A course score is reported for each course-enrollment instance in the

data. For students who choose not to drop the section of the course a letter score (i.e., A,

B+, B, C+, C, D, and F) associated to a numerical score (i.e., 4.0, 3.5, 3.0, 2.5, 2.0, 1.0,

0.0) is reported. Scores D and F are deemed insufficient for a pass score and require the

student to enroll the same course again in a subsequent term. Conditional on dropping a

section of a course a R letter score is reported. This is associated to no numerical score.

3.3 Descriptive Statistics

Course-enrollment level descriptive statistics.— Table 1 presents the score

distribution for various subpopulations in the dataset, providing statistics that average

over course-enrollment instances. On the 4.00 GPA scale, Calculus 1 averages around

2.80 points, and Calculus 2 around 2.75. Examining course-enrollment instances within

subpopulations based on student and professor covariates reveals significant variation.

The second panel depicts score variation conditional on a student’s initial ability, the

main student input in my setting. For Calculus 1, scores range from 2.41 to 3.22 GPA

points, moving from the first quartile to the top quartile in initial ability. Similar patterns

emerge for Calculus 2.

Each succeeding panel in the table dissects the distribution according to a specific

conditioning variable. For instance, the third and fourth panels illustrate the score

distribution conditioned on a student’s sex and major choice variables. As noted in

previous research, both variables show correlations with the observed scores. Comparable

findings arise in the last panel, where averages and standard deviations of scores are

computed based on the teaching load, course-specific tenure, and general tenure of the

instructor leading the section associated with the considered course-enrollment instance.

Section level descriptive statistics.— Table 2 supplements the previous table,
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Table 1: Descriptive Statistics - Course-Enrollment Level

Calculus 1 Calculus 2

Avg. Std. Dev. Avg. Std. Dev.

All students 2.80 1.17 2.75 1.07

Ability 0% - 25% 2.41 1.21 2.45 1.09

Ability 25% - 50% 2.65 1.21 2.55 1.07

Ability 50% - 75% 2.82 1.13 2.69 1.07

Ability 75% - 100% 3.22 0.99 3.08 0.99

Female 2.94 1.10 2.87 1.01

Male 2.70 1.22 2.66 1.11

Stem 2.81 1.19 2.74 1.09

Social sciences 2.77 1.16 2.59 1.09

Health sciences 2.78 1.16 2.86 1.00

High load 2.70 1.17 2.78 1.07

Low load 2.90 1.17 2.73 1.08

High course tenure 2.96 1.10 2.85 1.04

Low course tenure 2.72 1.20 2.68 1.09

High tenure 2.92 1.11 2.85 1.05

Low tenure 2.72 1.21 2.67 1.09

Notes: Statistics in the table correspond to the course-enrollment instance level. In the

final panel, high/low are defined in terms of above/below average for each of the variables

being considered.

providing summary statistics at the course-section level. This perspective is crucial for

understanding the variation across sections of a common course as perceived by students

when making enrollment decisions.

In the first panel, both Calculus 1 and Calculus 2 exhibit an average section size

of approximately 33 students. Notably, for Calculus 1, only 27% of observed sections

operate at full capacity, while this percentage increases to 40% for Calculus 2. As

we will see in subsequent sections, this slackness grants a planner the opportunity to

address efficiency considerations via reassigning students without the need to sacrifice

distributional concerns resulting from teh need to break some matches in order to meet

the capacity constraints. Shifting attention to the second panel of Table 2, the focus turns

to the distribution of scores at the section level. About 63% of students who enroll in both

Calculus 1 and Calculus 2 successfully complete the course. The average mean section

score is 2.70 GPA points for Calculus 1 and 2.66 for Calculus 2. However, it is noteworthy

that a substantial proportion of students, constituting 25% in the case of Calculus 1 and
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27% for Calculus 2, choose to withdraw from the initially enrolled section, leading to the

absence of a final score for these students.

Table 2: Descriptive Statistics - Course/Section Level

Calculus 1 Calculus 2

Avg. Std. Dev. Avg. Std. Dev.

Section size 33.35 9.17 32.89 10.54

% at capacity 27.00 – 40.00 –

Mean score 2.70 0.69 2.66 0.56

Pass rate 0.63 0.24 0.63 0.22

Drop rate 0.25 0.21 0.27 0.19

Load 2.77 1.36 2.54 1.40

Course tenure 9.63 8.73 10.27 9.60

General tenure 11.41 9.21 12.38 10.3

Notes: Statistics in the table correspond to the course-section level.

In terms of the distribution of instructor characteristics across sections, on average

an instructor responsible for a Calculus 1 section is subject to a teaching load of 2.77

courses, while for Calculus 2 the number is 2.54. Regarding course-specific and general

tenure, the average Calculus section is taught by a professor with approximately 9.63

terms of experience for Calculus 1 and 10.27 terms for Calculus 2. Additionally, when

considering general tenure, the corresponding figures are 11.41 and 12.38 terms.

4 Descriptive Results

This section discusses some descriptive results, highlighting the variations to be

considered in the main empirical empirical exercises. Two main patterns emerge: (i)

grading practices are inconsistent with various forms of relative grading policies, and (ii)

instructors show differences in their scoring patterns in response to student abilities.

Heterogeneity in grading policies.— The empirical model introduced in Section

5 approximates professors’ mapping of learning into scores by using absolute grading

policies. Indeed, some forms of relative grading policies can be ruled out directly from

the observed distribution of scores. For instance, consider examining the variation in the

fraction of students obtaining a given letter score under each professor. If all instructors
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adhere to the same target score distribution, the proportion of students receiving each

letter grade should remain consistent across professors.

Figure 1: Fraction of students with a letter score under each Calculus 1 professor.

Figure 1 displays these fractions for Calculus 1 instructors across various letter scores.

Each panel represents a different letter score, where each instructor is depicted by a bar

indicating the fraction of students achieving the corresponding panel’s letter score. All

panels indicate significant variation in the letter score distributions across professors.

Take the upper-left panel, depicting the proportion of students earning an A under each

instructor. These fractions range notably, from 17% to 80%, showcasing substantial

variation. Similar disparities exist across other letter scores as well.

Other forms of relative grading policies can also be shown to be inconsistent with the

data. For example, consider instructor following an individual target distribution for their

own sections. Figure 2 depicts, for different fixed Calculus 1 professors, the distribution

of letter scores associated to multiple academic periods. In particular, consider the six

instructors with the highest number of enrolled students, and the distribution for the

first five academic terms in which each instructor is active. Intuitively, no variation

in the distribution across academic terms would be consistent with a within-professor

target distribution. Figure 2 is inconsistent with such behavior as all instructors exhibit

non-trivial differences in the distribution of scores from one period to another.

15



Figure 2: Within professor distribution of scores across academic terms.

Professor-specific returns to ability.— Arguments in the paper are centered on the

existence of matching effects, specifically student-professor complementarities concerning

a student’s ability level. In such a case, variations in how increases in a student’s ability

impacts learning should be expected across instructors. Consider first measuring these

returns using course scores as a proxy for such learning. Conceptually, I entertain an

experiment involving two students with different ability levels each paired with a given

instructors. Subsequently I compare how different professors lead to different score gaps

between the two students. The following regression exercise captures the intuition above.

Score1i = γ0 + γ1· ai +
∑
j1 ̸=1

γ1j1 · (ai × di,j1) + γ2zi + εi.

Above, Score1i is a dummy variable for whether student i obtains a previously specified

score in Calculus 1. Let’s entertain two specific outcomes for Calculus 1: “student i

obtains a score of A” and “student i obtains a fail score”. The model links the likelihood

of a student obtaining these scores to a linear function of the students’ characteristics:

its ability level, denoted as ai, and a vector of learning-related covariates, represented

by zi. Parameter γ1 captures the returns to ability under the excluded instructor. To

accommodate the possibility of other professors differing in their returns, I consider

the dummy variable di,j, for whether student i is matched with professor j, and write

the reduced form model in terms of professor-specific ability slopes deviations from the

excluded professor: γ1
j . Figure 3 plots the distribution of the γ1

j coefficients.
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Figure 3: Distribution of γ1
j coefficients.

Each bar corresponds to a different coefficient associated to a given instructor. The

height of a bar captures deviations the ability slope of such professor relative to the

excluded instructor. Additionally, the estimates are constructed using only information on

first time students as a way of mitigating potential selection concerns. Clearly nontrivial

differences exist in the professor-specific slopes to ability. For example, in the first

panel, when comparing the smallest coefficient and the largest coefficient the difference

corresponds to approximately 0.30 so that an increase of 1.0 in a students initial ability

leads to almost a half a letter jump in the likelihood of obtaining an A score under the top

instructor relative to the bottom one. Consider for instance testing the null hypothesis

of all the γ1
j coefficients being equal to zero (i.e., no differences in the returns to ability

across professors). For both regressions the null is rejected (i.e., pval1 = pval2 = 0.00).

One concern is that differences in the slopes shown above could stem from differences

in grading policies, as opposed to actual learning outcomes. The following thought

experiment suggests an alternative exercise that deals with this issue: Imagine two

students with the same entrance exam score. Enroll both of them with different

Calculus 1 instructors, and after completing Calculus 1, have both students enroll under

a common Calculus 2 instructor. Under the “ceteris paribus” assumption, since the only

distinguishing factor in the paths these students follow is their Calculus 1 instructor,

any differences in their Calculus 2 performance should reflect disparities in the learning

outcomes associated with their respective Calculus 1 instructors. I can frame the

experiment above in terms of the reduced form model described below. It mimics the

previous regression model except for two things. First, I focus on students following a

Calculus 1/Calculus 2 path coinciding in the Calculus 2 instructor. Second, instead of

comparing the students in terms of their Calculus 1 scores, I compare them in terms of

their Calculus 2 scores, Score2i .

Score2i = γ0 + γ1· ai +
∑
j1 ̸=1

γ1j1 · (ai × di,j1) + γ2zi + εi.
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Figure 4 shows again the distribution of the γ1
j estimates for the latter regression.

Differences in the ability slopes persist. In particular, the null hypothesis of homogeneous

ability slopes is again rejected for both exercises (i.e., pval1 = pval2 = 0.00).

The subsequent sections explore this variation as a source of identification for the

professor-specific learning production functions in the structural model.

Figure 4: Distribution of γ1
j coefficients.

5 The Model

This section introduces a model that describes a student’s academic outcomes along

a sequence of compulsory subject-related courses. The model is divided into two key

components. First, we outline the process through which learning takes place along the

sequence, recognizing both the cumulative nature of learning, and how it depends on the

interaction of both student and instructor inputs. Second, we model how students enroll

in sections of a course, given the institutional constraints governing our empirical context.

The aim is to construct a conceptual version of the model and to leave the formulation of

an empirical version to subsequent sections.

5.1 The Learning Production Function

Consider a university that, in each academic term, denoted by t ∈ T , faces the task

of assigning students to instructors leading specific sections of courses in which students

seek enrollment. We index an arbitrary student by i ∈ I ≡ {1, ..., N}, and an instructor

by j ∈ J ≡ {1, ..., J}. The focus is placed on a sequence of courses centered around

a common subject. These courses, which we denote by κ ∈ K ≡ {1, 2, . . . , K}, might

correspond for instance to Calculus 1, Calculus 2, Calculus 3, and so forth. Students are

required to enroll and successfully complete all of the courses in the sequence in the order

specified by the indexes in K. For instance, a section of course κ > 1 can be enrolled
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only after obtaining a pass score for course κ− 1 (e.g., achieving a pass score in Calculus

1 is a prerequisite for enrolling in Calculus 2). This sequential arrangement reflects the

curriculum constraints set by the university.

Let ti ∈ T represent the academic period in which student i enrolls in the university.

Upon enrollment, i draws an ability, denoted as ai,0 ∈ R+, which we occasionally refer

to as i’s initial ability type. The value ai,0 can be interpreted as i’s understanding of the

prerequisite material required for the courses in K. For instance, it may correspond to

the student’s score in the math component of a college entrance examination designed to

assess a student’s understanding of high-school pre-calculus. As the student progresses

along the sequence of courses, its ability is updated in a way that reflects i’s acquired

knowledge of the sequence curriculum. We denote a student’s type at the end of period

t > 0 as ai,t ∈ R+.

In any given academic term t, multiple sections of a course κmay be offered, with each

section being guided by a single instructor. The pool of all such instructors is denoted by

J κ
t ⊆ J . Notice that this is potentially a strict subset of J as some instructors might not

be active in certain periods for exogenous reasons. The multiplicity of instructors under

a common course implies that more than one way of matching students to professors will

exist in any given course/period pair. Let κi,t stand for the course in the sequence student

i seeks to enroll in period t, and ji,t for the instructor student i is paired with. While

subsequent subsections describe the process by which these assignments take place, our

interest here is in describing the academic outcomes conditional on the student’s match.

With this goal in mind, let’s consider a student, denoted as i, who, in period t, is

paired with instructor ji,t = j for course κi,t = κ. Two potential academic outcomes

might arise. First, i might decide to drop the section of the course, in which case an R

(i.e., the notation represents ’retire’) score is recorded. Such a situation is considered an

unsuccessful attempt at completing the course, requiring i to enroll in the same course

again in a subsequent term. The dummy variable Rκ
i,t records i’s decision not to drop

the section of course κ (i.e., Rκ
i,t = 0 corresponds to dropping the section). Alternatively,

the student might choose to complete the course, resulting in a discrete course score

(analogous to the A, B+, B, and so forth system common in higher education institutions).

Student i’s discrete score upon completing the course is recorded by the discrete random

variable Sκ
i,t. The setting described above is formally captured by the following collection

of equations,
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[ 0 ] ai,ti ∼ Fa(· ), ji,t = j, κi,t = κ,

[ 1 ] ai,t = fj(ai,t−1,xi,j,t),

[ 2 ] si,t = βj· ai,t + cj,

[ 3 ] Rκ
i,t = 1

{
si,t + ε̃κi,j,t ≥ sl∗

}
,

[ 4 ] Sκ
i,t =

∑
l

sl · 1
{
sl+1 > si,t + η̃κi,j,t ≥ sl

}
.

To fix ideas, suppose a student i enters academic term t with an ability type given

by ai,t−1. Equation [1] describes the learning output of such a student after being paired

with instructor j for course κ. This quantity, unobserved by the researcher, is denoted

by fj(ai,t−1,xi,j,t). Notice that besides the student’s ability, learning outputs are affected

by a vector xi,j,t capturing learning-related covariates. That these learning production

functions are indexed by j implies the possibility of different learning outputs across

instructors even conditional on the values of ai,t−1 and xi,j,t
6. In turn, equation [2]

describes the score outcome the student obtains, si,t. The latter differs from learning

in that it is expressed in terms of the grading policy of i’s professor, (βj, cj).

Equations [4] describe how i’s learning output maps into a course discrete score.

Intuitively, we can think of si,t as the student’s expected continuous score obtained in

period t. To make it clear that such a score depends on the student’s ability and the

underlying covariates, we will occasionally use the notation si,t ≡ sj(ai,t−1,xi,j,t). Notice

that this quantity differs from Sκ
i,t, the discrete score obtained by the student. While the

former represents the instructor’s granular assessment of the student’s performance (e.g.,

the 100 points based raw score i obtains in j’s course) the latter is a discrete variable

indicating the region of the score support where sj(ai,t,xi,j,t) falls. Institutional rules fix

thresholds s1 > s2 > ... > sL which determine the map between a student’s continuous

underlying score and its final discrete score. As an example, student i obtains a score of

sl if sj(ai,t,xi,j,t) (plus a random perturbation) exceeds the threshold sl but falls short

of the threshold for score sl+1. The error terms η̃κi,j,t and ε̃κi,j,t perturb the relationship

between a student’s continuous and discrete course scores.

We highlight that si,t depends not only on the learning generated by the match but

also on the instructor’s grading policy (βj, cj). We can interpret these as encapsulating

the leniency or stringency with which a student’s learning is evaluated in the course.

Figure 5 depicts this by plotting the map ai,t → βj · ai,t + cj for two different instructors

who differ only in their grading policies (i.e., but whose learning production functions

coincide: fj = fj′ ). For instance, the blue curve depicts an instructor who, while more

lenient in terms of the marginal return to learning (e.g., a higher βj), is more stringent in

6This can be interpreted in terms of allowing for pedagogical differences across instructors which are
not captured by any of the measured inputs of the learning production functions.
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terms of the level of the scoring equation (e.g., a smaller cj). These differences map two

students, with the same underlying learning output, to different scores under each of the

professors. For example, while under the red curve students with low ability levels end

up above the sl threshold, the same is not true under the scoring equation corresponding

to the blue curve.

ai,t

si,t βj· fj(a, · ) + cj

βj′ · fj′ (a, · ) + cj′

sl sl

a0

j
′

j

Figure 5: Grading policy differences

As explained before, student i can choose to drop instructor j’s section of course κ

which is explained by equation [3]. Intuitively, i chooses to drop the section whenever its

underlying continuous score, sj(ai,t,xi,j,t), places him below a certain threshold sl∗ . As

an example, one can think of a student choosing to drop the course whenever it expects

to end up with a fail score. Notice that the error term ε̃κi,j,t allows for heterogeneity in the

course dropping threshold. It can also capture uncertainty resulting from course dropping

decisions depending on noisy signals of the true underlying score (i.e., the student’s

perception of its position in the grading policy after the midterm, but without the final

exam signal). An error term ε̃κi,j,t with a large variance could for instance correspond

to a situation in which students face a lot of uncertainty before the dropout deadline.

Correlations between ε̃κi,j,t and η̃κi,j,t describe unobserved relationships between the scoring

and course dropping outcomes7.

We conclude our description by being precise about the units under which learning

is being measured. In a setting described by standardized testing, all students are tested

under a common grading policy so that a natural choice is to measure fj(a,x) in the

7Following the midterm/final analogy, we can interpret correlations between the error terms as
capturing the fact that the student’s position after the midterm is a noisy signal of what its final
continuous score will be. In other words, a student who outperforms its own type after the midterm
is also likely to do so for the final exam.
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units of the common test. This is not the situation in our empirical context as in

higher education institutions students are evaluated according to the grading policy of

their matched instructor. We instead propose defining learning output in terms of the

grading policy of a reference professor ĵκ for each course κ8. It then follows that for any

course κ instructor j, we interpret fj(a,x) as the learning output of a student who is

instructed by professor j but graded according to instructor ĵκ’s grading policy. We can

then interpret (βj and cj) as deviations of instructor j’s grading policy from that of the

reference professor. Under this intuition, cj corresponds to the baseline score granted by

the instructor and βj captures the marginal reward to learning under instructor j (i.e., in

both cases relative to the reference professor). It is immediate that under the proposed

normalization, βĵκ = 1 and cĵκ = 0.

5.2 The Demand for Sections Within a Course

The preceding subsection provides a model for how learning and related academic

outcomes are determined given a student-instructor match. Now, we describe how these

matches emerge in our empirical setting. Two rules govern the assignment of students to

professors at Intec. First, all first-period students (i.e., students in their initial academic

period) are randomly assigned to a section of course κ = 1. Second, all other course

enrollment instances, require the student to enroll a section of a course κ by participating

in a first-come-first-serve mechanism. To be precise, every academic term t a course

enrollment platform will open enabling students to enroll in a section of the course. Since

multiple sections can be associated with the same instructor, we must introduce additional

notation that distinguishes two sections under the same instructor. In particular, consider

denoting a particular section as s ∈ Secκt , where Secκt represents the collection of all

sections of course κ active in period t. Of course, each of these sections must be under an

instructor j in J κ
t . Whenever it is not obvious from the context, we explicitly keep track

of the professor associated with section s using the notation js.

The course-enrollment mechanism implies that a student attempting to enroll in a

section of course κ faces two sequential decisions. First, student i must choose an entry

time, τ > 0, to access the platform. Subsequently, i must select, from the available

sections, which one to enroll in. These two problems are intertwined since sections are

subject to capacity constraints (i.e., limited slots are available for each section due to

institutional constraints). This implies that students may need to access the platform

early to secure enrollment in highly demanded sections. Formally, we frame the decision

problem of a student i seeking a section of course κ in terms of the following two-stage

optimization problem,

8The identity of the reference professor is irrelevant and any course κ professor can serve this role.
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max
τ≥0

[
max

s

{
Ui,s,t s.t. s ∈ Ct(τ)

}
+ ϕ(τ)

]
,

Ct(τ) ≡ {s ∈ Sectκt : τ ≤ τ eqs,t}.

The inner maximization problem corresponds to a standard discrete choice problem,

where students choose the section of the course that maximizes their utility, denoted by

Ui,s,t. Importantly, students can only select sections from the set Ct(τ), which includes

all active sections whose capacity constraint is not binding at the entry time τ . In other

words, i’s choice set in period t may be potentially smaller than Sectκt , the set of all active

sections in t. Since the availability of a slot in a given section depends on the demand

decisions of other students, we must treat the choice set faced by i as an equilibrium

object. The term τ eqs,t > 0, assumed to be known by the students, denotes the equilibrium

time at which the capacity constraint of section s becomes binding. For instance, very

popular sections will be associated with small values of τ eqs,t, while the opposite holds for

unpopular sections.

In turn, the outer maximization problem pertains to the decision of when to enter

the platform, while recognizing that this choice influences the set of options the student

will ultimately face. The formulation above assumes that students face a cost from

participating in the course enrollment mechanism, ϕ(τ), and that such a cost is a function

of their platform entry time decision. This cost rationalizes the fact that not all students

choose to enter the platform at the same time and can be interpreted as a reluctance

towards early enrollment or more generally of participating in the mechanism.

We adopt a random utility model approach for the inner maximization problem by

treating Ui,s,t as a random variable. This allows us to model preferences in terms of a

systematic component, shared by all students with common characteristics, as well as an

idiosyncratic component capturing unobserved heterogeneity in students’ preferences. In

particular, as seems reasonable from our descriptive evidence exercises, we assume student

i’s utility for section s under an instructor j takes the following form,

Ui,s,t = Us,t(sj(ai,t,xi,j,t) , fj(ai,t−1,xi,j,t)) + νi,s,t.

Intuitively, our model for section preferences postulates that students derive utility

not only from the score they expect to obtain under instructor j but also from the actual

learning derived from the match. Different functional forms for Us,t(· ) can be used to

capture various preferences for these two components within the student population. For

example, at the extremes, students might have preferences that depend on only scores

or learning. As suggested by the indexing of the systematic utility, students might also

have preferences related to other aspects of the section being demanded, such as the

course schedule or characteristics of the instructor, not directly related to the learning
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or scoring outcomes expected by the student. These preferences can be incorporated

into the formulation above by using, for example, preference fixed effects as part of

the systematic utility Us,t specification. The term νi,s,t is an error term reflecting the

idiosyncratic component of utility.

While the above formulation clearly outlines the two steps involved in the course

demand problem faced by students, it is also possible (and potentially advantageous from

an empirical point of view) to express the demand problem from a different perspective.

Namely, one can think of students first choosing a section s from the full set of active

sections Sectκt , and subsequently choosing a platform entry time that maximizes their

utility conditional on securing a slot at the section choice. We can derive this alternative

formulation by manipulating the expression for the demand model as in the following,

max
τ

[
max

s

{
Ui,s,t s.t. s ∈ Ct(τ)

}
+ ϕ(τ)

]
= max

s

[
Ui,s,t +max

τ

{
ϕ(τ); s.t. s ∈ Ct(τ)

}]
.

One can think of this formulation as the decision of student i from an ex-ante

perspective. Before the platform opens the student face no constraints in its choice set, as

it can always choose to enter the platform sufficiently early (i.e., which requires accepting

the cost of such decision) in a way that ensures the availability of a slot in the section

being demanded.

5.3 Discussion

In this section, we explore the identification of an empirical version of the model

described above. Before delving into this, it is beneficial to compare our framework

with other commonly utilized empirical models for quantifying disparities in pedagogy

among instructors. This comparison will facilitate the placement of our model within

the existing literature and underscore certain identification challenges arising from our

divergences from these established models. To illustrate, let’s consider the following model

for generating learning outcomes presented below9.

[ 0 ] ai,0 ∼ Fa(· ),

[ 1 ] si,1 = fj(ai,0) + η̃i,j,1.

This simple model captures summarizes (in essence) a substantial body of work

in assessing pedagogical disparities among instructors. For instance, assuming fj(· )
is additive separable in student and professor attributes is a common feature in many

educational studies. As another example, the fact that scores are expressed in the same

9We use the same notation as in the model described in the preceding section.
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units as the learning production function corresponds to situations in which standardized

tests are available. The prevalence of such a model in the literature largely stems

from its high tractability from an econometric perspective, enabling the estimation of

learning returns associated with each instructor by directly analyzing within-professor

score distributions. For instance, in the case above, the average score for students

enrolled under instructor j given the ability type a0 serves as a consistent estimator

for the functions fj(a0).

As is clear from our previous discussions, the model is a poor description of higher

education environments, which is why we choose to deviate from it. Nevertheless, each

of these deviations presents empirical challenges that render the identification approach

described earlier inapplicable. Let’s see this by means of some examples. To be concrete,

consider a minor modification of the previous model as to account for differences in

instructors’ grading policies while keeping other aspects the same,

[ 0 ] ai,0 ∼ Fa(· ),

[ 1 ] si,1 = βj· fj(ai,0) + cj + η̃i,j,1.

Even without considering the other elements in our framework, it is evident that

the within-professor conditional average approach discussed earlier is no longer useful in

identifying the learning production functions. For example, the average scores of students

under instructor j conditional on the ability type ai,0 = a0, is now consistent for a quantity

that conflates both learning returns and grading policies, 1
n

∑
i si,1 →p βj· fj(a0) + cj.

Put simply, observing high average scores may indicate either a high learning return

under professor j, a choice of a very lenient grading policy, or both. Clearly, the latter is

unsatisfactory if the aim is to deduce the nature of an instructor’s production function.

As a second example, consider the following alternative deviation from the model in

the direction of our framework. Specifically, let’s modify the model by allowing students

to withdraw from previously enrolled courses/sections. Following our formulation, an

example of this corresponds to the following,

[ 0 ] ai,0 ∼ Fa(· ),

[ 1 ] si,1 = fj(ai,0) + η̃i,j,1,

[ 2 ] Ri,1 = 1{si,1 + ε̃i,j,1 ≥ sl∗}.

Since only the scores of students who choose not to withdraw from a course can be

observed in the academic records, the approach based on the within-professor average

scores of students conditional on ability must also condition on the students not choosing

to withdraw from the section of the course. In this case, such an average is again

consistent for a quantity that differs from the learning production function images of

interest, 1
n

∑
i si,1 →p fj(a0)+E(ε̃i,j,1 |Ri,1 = 1). The implication is that, after observing
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high average scores for the conditioning set, the researcher is unable to determine whether

these scores reflect a high learning return or merely the fact that the average is computed

for students with high εi,j,1 draws.

6 Empirical Model and Identification Arguments

6.1 Identifying the Learning Production Function

Consider the problem of inferring the shape of the learning production function

associated to a given instructor in course κ ∈ K. As explained before, the main challenge

this poses lies in disentangling the contributions of grading policies and actual learning

outputs on the observed distribution of scores. To address this, we exploit the sequential

enrollment of students into courses in the sequence K, and the fact that while learning

in course κ impacts outcomes in course κ + 1, the same is not true about the grading

policies used by κ instructors. The starting point is a set of assumptions regarding the

distribution of the error terms in our model.

Assumption 1. The following assumptions are assumed to hold,

1. Random variables ηκi,j,t and εκi,j,t exist such that ε̃κi,j,t = σκ
ε · εκi,j,t and η̃κi,j,t = σκ

η · ηκi,j,t+
σκ
ε · εκi,j,t for the scalars σκ

ε ,σ
κ
η ,

2. The sequences {ηκi,j,t}i,j,t and {εκi,j,t}i,j,t are mean zero and i.i.d.. Their distributions,

denoted by Fη(· ) and Fε(· ), are known by the researcher. The associated densities

are denoted by fη(· ) and fε(· ).

3. The random variable νi,s,t is independent of from (ηκi,j,t, ε
κ
i,j,t).

The first two parts of the assumption are technical and are primarily used as tools to

facilitate inversion arguments in identifying the learning production functions. Essentially,

we assume that the distribution of the error terms in the scoring equation and the course

dropping equation can be parameterized in terms of their variances. Correlations between

these error terms are integrated into the model through sums of random variables (i.e.,

σκ
η · ηκi,j,t + σκ

ε · εκi,j,t is correlated with σκ
η · ηκi,j,t). The third part of the assumption requires

that unobserved heterogeneity in the preferences of students over courses/sections remains

unrelated to the perturbations of the scoring and dropping equations. Although the

latter involves restrictions, we aim to mitigate potential correlations by incorporating a

comprehensive set of controls into our demand specification when conducting our empirical

exercises.

Let’s now construct an argument for the identification of the learning production

function given Assumption 1. For expositional reasons, we present results for a simplified
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version of our model and leave a treatment of the fully fledged framework for the appendix

section. In particular, we consider a version of our model in which students don’t have the

option of dropping a section of a course. This allows us to bypass some technical details

which are not a the core of the results. Second, the focus here is on the identification

of the production function primitives associated to instructors in the first course of the

sequence, κ = 1. Constructing arguments for other courses will be a simple matter of

adapting the notation in what follows. In addition, since our arguments will not depend

on the specific time period in which a student enrolls a course/section but instead just

require keeping track of whether a student is in its first or second academic term in the

university, we simplify the notation by omitting the time indices. It will be clear from the

context whether an argument is based on first or second term students.

With this in mind, consider the problem of identifying the learning production

function of a κ = 1 instructor, j1. Our analysis focuses on the collection of all students

who in their first enrollment instance of course κ = 1 obtain a score of sl or higher

conditional on enrolling a section under j1. Furthermore, we condition on students of an

initial type ai,ti = a0 and who enroll j1’s section under a vector of covariates x1. Our

structural model offers an expression for the conditional probability described above.

P
(
S1
i,j1 ≥ sl | a0, x1, j1

)
=

∫
η

1
{
βj1· fj1(a0,x1) + cj1 + σ1

η· η ≥ sl
}
fη(η) dη,

=

∫
η

1

{
η ≥

sl − βj1· fj1(a0,x1)− cj1

σ1
η

}
fη(η) dη,

=

[
1− Fη

(
sl − βj1· fj1(a0,x1)− cj1

σ1
η

)]
.

In words, student i achieves a score above sl whenever βj1· fj1(a0,x1) + cj1 + σ1
η· η1i,j1

(i.e., the students expected continuous score) falls weakly above the threshold sl. The

expression above just establishes a relationship between the observed mass of students

satisfying the event S1
i,j1 ≥ sl (within the conditioning set), and a function of the primitives

of the model. Under Assumption 1, we can invert the relationship to obtain the equivalent

expression given below,

sl − βj1 · fj1(a0,x1)− cj1

σ1
η

= F−1
η

[
P
(
S1
i,j1 ≥ sl | a0, x1, j1

)]
︸ ︷︷ ︸

≡θ(sl | a0,x1,j1)

.

The latter lends itself to an intuitive interpretation. Consider the marginal student,

whose η1i,j1 draw places him precisely at the boundary between scores sl and sl−1. Within

the conditioning set, such marginal student’s η draw defines the entire mass of students

who ultimately receive a score above sl within the conditioning set. For example, those
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with a higher η1i,j1 will achieve scores weakly above sl, while those with smaller draws

obtain a strictly smaller score. The right-hand side of the expression above identifies

the marginal student’s draw by finding the precise η1 value such that the mass to its

right under Fη(· ) corresponds exactly to the observed share of students who obtain a

score above sl, P
(
S1
i,j1 ≥ sl | a0, x1, j1

)
(i.e., which the econometrician can observe).

Importantly, we can also identify the marginal student as that with a draw satisfying

(sl−βj1 · fj1(a0,x1)+ cj1 +σ1
η)/σ

1
η = η. The equality derived merely states that these two

expressions identifying the marginal student must coincide. The notation θ(sl | a0,x1, j
1)

makes it clear that any change in the conditioning arguments leads to a change in the

marginal student’s identity.

By itself θ(sl | a0,x1, j
1) does not offer much insight into the underlying model as

it pools multiple primitives into a single expression. However, as stated in the following

proposition, when considered for two different score cutoffs, sl and sl′ , it is possible to

start gaining an understanding of some primitives of interest.

Proposition 1. The images fĵ1(a0,x1) (i.e., κ = 1’s reference learning production

function) and the variance parameter σ1
η are point identified.

Proof. Fixing the conditioning quantities a0,x1, we can identify the marginal students

associate to the letter scores sl and sl′ ,

θ(sl |a0,x1, j
1) =

sl − βj1fj1(a0,x1)− cj1

σ1
η

and θ(sl′ |a0,x1, j
1) =

sl′ − βj1fj1(a0,x1)− cj1

σ1
η

.

When l ̸= l
′
, the latter defines a system of two equations on the unknowns σ1

η and

βj1fj1(a0,x1) + cj1 . Solving for the unique solution to the system leads to the following

expression,

σ1
η =

sl − sl′

θ(sl | a0,x1, j1)− θ(sl′ | a0,x1, j1)
,

βj1fj1(a0) + cj1 = sl −
sl − sl′

θ(sl | a0,x1, j1)− θ(sl′ | a0,x1, j1)
· θ(sl | a0,x1, j

1).

The identification of the image fĵ1(a0,x1) follows from considering the second equation

above for j1 = ĵ1 and recalling that for the reference instructor βĵ1 = 1 and cĵ1 = 0. ■

A graph serves as a visual representation of the argument behind the proof. Within

the conditioning set, we can think of a student i’s score as a linear function of its

unobserved draw η1i,j1 , with an intercept of βj1· fj1(a0,x1) + cj1 and a slope of σ1
η. Our

identification of the marginal student associated to each letter score corresponds to

identifying a point in the score equation. In the graph, for instance, our arguments
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allow us to identify the points (θ(sl | · ), sl) and (θ(sl′ | · ), sl′ ). The fact that a linear

equation is pinned down by two of its points allows us to identify both the slope and

the intercept of the curve. In more intuitive terms, the result states that we can always

identify the learning output of an instructor j1, in terms of its own grading policy, by

directly inspecting the distribution of scores such instructor induces.

θ(sl | · ) θ(sl′ | · )

βj1· fj1(a0,x1) + cj1

sl

sl′

0

η

It must be emphasized that in the absence of variations in grading policies among

professors, the aforementioned arguments would allow us to fully identify the learning

production functions associated to each instructor. The situation resembles a scenario

under standardized tests where observed scores directly reflect disparities in teaching

abilities. In our context, the presence of grading policies necessitates additional efforts to

separate the effects of learning returns from grading policies. With this purpose in mind

let’s consider the performance of students in our conditioning set in the subsequent course,

κ = 2. To be precise, we are interested in the fraction of students (within our conditioning

set) who after successfully completing κ = 1, enroll a section of κ = 2 under instructor

j2 and obtain a score above sl. In addition, we focus our attention of the subpopulation

of students who enroll j2’s section under a vector of covariates x2. As before, our model

implies a concrete expression for the conditional probability of the event described above,

P
(
S2
i,j2 ≥ sl, | a0, x1, x2, j1, j2, S1

i,j1 ≥ sl∗
)
,

=

[
1− Fη

(
sl∗ − βj1 · fj1(a0,x1)− cj1

σ1
η

)][
1− Fη

(
sl − βj2 · fj2(fj1(a0,x1),x2)− cj2

σ2
η

)]
,

=

[
1− Fη

(
θ(sl∗ | a0,x1, j

1)

)][
1− Fη

(
sl − βj2 · fj2(fj1(a0,x1),x2)− cj2

σ2
η

)]
.

This expression bears a close resemblance to the one discussed earlier for the

identification of θ(sl | a0,x1, j
1). The difference lies in the consideration of students who

not only achieve a score of sl or above in course κ = 2, but also those who are assigned to
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a specific instructor j1 in course κ = 1 and successfully complete the course under such

professor. Inverting the relationship we obtain the following identity,

sl − βj2· fj2(fj1(a0,x1),x2)− cj2
σ2
η

= F−1
η

[P(S2
i,j2 ≥ sl | a0, x1, x2, j1, j2, S1

i,j1 ≥ sl∗
)

(1− Fη(θ(sl∗ | a0,x1, j1))

)
︸ ︷︷ ︸

θ(sl | a0,x1,x2,j1,j2)

.

We are now in a position that allows us to state the main result of this section. The

result establishes the identification of the κ = 1 production functions under an injectivity

assumption. We state and prove the result before considering an intuitive discussion of

the content behind the Proposition.

Proposition 2. The following identification results hold,

1. The image of the composition βj2· fj2(fj1(a0,x1),x2) + cj2 and the variance term σ2
η

are point identified,

3. Suppose that fj2(· ,x2) is injective for x2 fixed. Then the image fj1(a0,x1)

is point identified provided the existence of ã0 such that fj2(fj1(a0,x1),x2) =

fj2(fĵ1(ã0,x1),x2).

Proof. We start by following the same reasoning as in the previous proposition. In

particular, fixing the conditioning variables (a0,x1,x2), consider the following system

of equations on the unknowns σ2
η and βj2· fj2(fj1(a0,x1),x2) + cj2 ,

sl − βj2· fj2(fj1(a0,x1),x2)− cj2

σ2
η

= θ(sl | a0,x1,x2, j
1, j2),

sl′ − βj2· fj2(fj1(a0,x1),x2)− cj2

σ2
η

= θ(sl′ | a0,x1,x2, j
1, j2).

The first claim follows from noticing that when considering l ̸= l
′
, the equations above

define a system with a unique solution identifying both σ2
η and βj2 · fj2(fj1(a0,x1),x2)+cj2 .

Consider now the final claim in the proposition. Under the premise, we can find an ability

level ã0 such that βj2· fj2(fj1(a0,x1),x2) + cj2 = βj2· fj2(fĵ1(ã0,x1),x2) + cj2 . Moreover,

given the validity of the first part of the claim in the proposition, whose truth we have

already asserted, we can find ã0 by directly inspecting the observed data. It follows

from the injectivity of fĵ2(· ) that fj1(a0,x1) = fĵ1(ã0,x1). However, since Proposition 1

has already established the identification of ĵ1’s production function, the latter equality

implies we can directly infer the image of j1’s production function at the argument (a0,x1).

■
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Proposition 1, our main identification argument, can be understood in terms of a

simple though experiment. Suppose we observe two students with the same initial ability

level a0 but assigned to different κ = 1 instructors: student one with instructor j1 and

student two with j̃1. As discussed, comparing their κ = 1 scores directly is uninformative

for discerning potential gaps in their learning outputs. The disparity in the scores could

be due to either instructor quality differences or differences in the grading policies used

by these instructors.

A potential solution to this issue consists in comparing these two students, not in

terms of their κ = 1 scores, but in terms of some other future signal related to κ = 1’s

learning returns but not κ = 1’s grading policies. Carefully choosing such signals then

becomes very important. For instance, one concern is that as we increase the time distance

between the enrollment of κ = 1 and the measurement of the signal, the noise in the latter

might increase, making it difficult to detect differences in instruction quality empirically.

Moreover, one might be concerned about differences in the academic path followed by the

students after κ = 1 enrollment, and prior to the measurement of the signal, which would

invalidate the ideal type of ceteris paribus exercise we would like to approximate.

Given these concerns, a natural choice is to consider the scores of these students in the

immediately subsequent course in the sequence. Some care is required in implementing

the approach. For instance, it is reasonable to limit the comparison to students who share

a common κ = 2 professor to avoid confounding effects from different κ = 2 instructors.

But even then, one might be concerned about separating the contribution of this common

κ = 2 professor in the observed score differences across the students. Proposition 2 states

that this last point is not an issue as the contribution of the κ = 2 instructor can be

filtered out from the accounting under the injectivity of its production function. Figure

6 captures this intuition graphically (while omitting from the notation x1 and x2).

Figure 6: Identification argument for fj(a,x)
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Notice that the same arguments in Proposition 6 lend themselves to a partial

identification argument in the absence of a type ã0 as required by the premise. For

example, let’s entertain a situation in which fĵ2(fj1(a0,x1),x2) > fĵ2(fĵ1(ã0,x1),x2) for

all types ã0 whose validity can be directly observed from the data. The logic of the proof

above suggests there is still a lot of information we can extract from this inequality. For

instance, assuming fĵ2(· ,x2) is monotone increasing for a fixed x2, we can conclude that

fj1(a0,x1) must exceed the learning return induced by instructor ĵ1 under any student ã0

in record. In other words, we can construct a lower bound for the unknown fj1(a0,x1).

Similar situations can be treated in an analog way.

We conclude the subsection by highlighting that once the images fj1(a0,x1) are

identified, we can identify the grading policies associated to each instructor by going

back to our results on the marginal student associated to each score cutoff for κ = 1.

Proposition 6.1 formally states the latter.

Proposition 3. The grading policy of instructor j1 (i.e., βj1 , cj1) is point identified

provided that fj1(a0,x1) is known for some (a0,x1).

Proof. Consider the expressions for θ(sl | a0,x1, j
1) and θ(sl | ã0,x1, j

1) for two different

student types such that fj1(a0,x1) ̸= fj1(ã0,x1)

θ(sl | a0,x1, j
1) =

sl − βj1· fj1(a0,x1) + cj1

σ1
η

,

θ(sl | ã0,x1, j
1) =

sl − βj1 · fj1(ã0,x1) + cj1

σ1
η

.

It is easy to see that given the identification of the images fj1(a0,x1) and fj1(ã0,x1),

the two equations above define a system of equations on the unknowns βj1 and cj1 . The

unique solution associated to the system identifies j1’s grading policy. ■

6.2 Identifying the Demand for Course/Sections

The preceding section introduces arguments regarding the identification of the

production function model. We now turn our attention into the identification of the

underlying primitives within the model for the demand of course/sections. We start the

discussion the following assumptions regarding the nature of the demand model error

terms.

Assumption 2. The following assumptions are assumed to be satisfied,

1. {νi,s,t}i,s,t is a collection of mean zero i.i.d. random variables whose distribution,

denoted by Fν(· ), is known to the researcher.
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2. The distribution Fν(· ) is continuous and of full support.

3. The utility function Us,t(sj(ai,t,xi,j,t) , fj(ai,t−1,xi,j,t)) takes the following functional

form Us,t = λs,t + α0· sj(ai,t,xi,j,t) + α1· fj(ai,t−1,xi,j,t)).

The first part of the assumption is a standard independence assumption for the

demand model error terms. Assuming a common distribution for νi,s,t across all indices,

is also a standard assumption that allows us map the demand model objects to the

observed instructor market shares via simple conditional choice probabilities. The second

and third assumptions are technical and simply allows us to borrow some identification

results from the discrete choice literature on linear random utility models.

Given these assumptions, our identification argument can be framed in terms of two

main observations. First, we emphasize the implicit assumption that the cost associated

with participating in the course enrollment mechanism (i.e., ϕ(τ)) remains uniform across

all students, thereby rendering it independent of the student index i. Consequently, we can

conceptualize max
τ

{
ϕ(τ); s.t. s ∈ Ct(τ)

}
as a professor-period specific fixed cost incurred

by a student when expressing its preference for instructor j during academic period t.

This characteristic proves useful as it enables us to formulate the course demand problem

as a standard discrete choice problem with utilities under alternative-period fixed effects.

Denoting the sum term λs,t+max
τ

{
ϕ(τ); s.t. s ∈ Ct(τ)

}
by Φs,t, the ex-ante formulation of

the demand model for a student enrolling course κ in period t can be written as follows,

max
s∈Sectκt

[
Φs,t + α0· sj(ai,t,xi,j,t) + α1· fj(ai,t−1,xi,j,t) + νi,s,t

]

Second, we draw attention to the nature of the identification arguments put forth in

the preceding section, which establish the identification of both the learning production

functions and the grading policies associated to each professor. Consequently, when

considering the identification of the course demand primitives, it becomes possible to

regard fj(a,x) and sj(a,x) as observed quantities. These two observations significantly

simplify the identification problem of the demand model, reducing it to the identification

of a simple Random Utility Model (RUM). The arguments for the identification of the

α0, α1 primitives are standard so that we can state the following result without a proof.

Proposition 4. The parameters α0, α1, and Φs,t are point identified.
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7 Estimation and Results

7.1 Parameterizing the Model

As discussed above, in principle we could completely estimate the model by

implementing a nonparametric estimator based on our identification arguments. While

this approach offers certain desirable features, including the ability to refrain from

imposing parametric assumptions on key elements such as the learning production

functions, practical considerations make the idea of a more restrictive parametric approach

attractive. For example, on the side of learning production, our arguments rely on the

possibility of matching empirical and theoretical moments for subpopulations of students

who share common academic paths. Given the relatively modest class sizes in our context,

the observed student count within these subpopulations might be insufficient for empirical

moments to closely resemble their theoretical counterparts. Analogous concerns may arise

within the demand model.

For this reason, we consider here adopting a fully parametric approach for the

estimation exercise. This adjustment not only alleviates data limitation constraints

but also affords us the opportunity to specify certain parameters of interest as being

common to all instructors which further reduces the data demands of the model. In what

follows, we delve into the specifics of these empirical model restrictions and explain how

we estimate the resulting model. The final subsection presents the estimates resulting

from the approach.

Parameterizing the Learning Production Function

The specification of our empirical model commences with the parameterization of

the learning production function associated with each instructor. This is guided by

two principal considerations. Firstly, the functional form must exhibit enough flexibility

as to accommodate a wide array of learning production shapes. Secondly, the model

should be able to capture non-trivial matching effects in the learning production process.

Specifically, we aim to capture interactions between instructor characteristics and our

measure of student ability.

These two concerns respond to the need to allowing for flexibility at the estimation

stage so that the model is capable of capturing the true shape of the learning production

functions. For example, consider the additively separable specification common in

empirical work, fj(a0,x) = δj + g(a0). The parameterization would be inadequate for

our purposes as it would eliminate, at the modeling stage, the possibility of matching

effects in the production of learning. As a second example, the multiplicatively separable

parameterization fj(a0,x) = δj ·a0), common in theoretical settings, address the previous
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concern but implies simplistic positive/negative assortative matching as the only plausible

learning ideal scenarios. To address these concerns, our proposal is the following:

fj(a,x) = δ̃0j (x) + δ̃1j (x) · aδ̃
2
j (x). This formulation accounts for differences in the level

of the learning production function, the size of the marginal returns to ability, and the

nature of the returns to scale to ability. Additionally, it allows each of these coefficients

to vary across instructors both in terms of observed and unobserved attributes.

To be concrete consider partitioning the covariate vector as xi,j,t = (x1,i,x2,j,t). The

first component encapsulates time-invariant characteristics of students. In our estimation

exercise we consider x1,i = (sexi, {maji,d}4d=1) where sexi is a male dummy variable and

majori,d is a dummy indicating whether student i’s major choice is part of department

d (i.e., we partition the set of all majors in terms of four major departments, closely

following the organizational division within the university) one of four major departments

in the university. Meanwhile, x2,j,t = (loadj,t, ten1,j,t, ten2,j,t). The variable loadj,t is a

binary variable specifying whether the total number of sections taught by instructor j in

the academic period t exceeds a certain threshold. This allows us to account for either

positive returns (learning from teaching multiple sections) or negative returns (potentially

due to fatigue) associated with an instructor’s teaching load in a given term. Furthermore,

ten1,j,t and ten2,j,t are binary variables denoting whether or not the instructor’s tenure at

period t exceeds certain thresholds. The former, ten1,j,t, reflects the number of terms of

the course sequence that instructor t has taught by the beginning of period t, while ten2,j,t

similarly measures tenure across all courses the instructor has taught in the university.

Given these considerations, we parameterize the production function coefficients in

terms of the following,

δ̃0j (x) = δ0j + µ
′

0x2,j,t + γ
′
x1,i,

δ̃1j (x) = δ0j + µ
′

1x2,j,t,

δ̃2j (x) = δ2j + µ
′

2x2,j,t.

. Here, δlj; l ∈ {0, 1, 2} are production fixed effects capturing unobserved ways

in which specific instructors influence production output. In turn the terms µ
′
·x2,j,t

capture productivity differences arising from observed heterogeneity reflected in x2,j,t.

Importantly, notice the t index in the latter suggesting these variables change over time,

thus allowing them to be separately identified from the instructor fixed effects parameters.

Finally, γ
′
x1,i allows for differences in student characteristics other than ability to affect

the level of the learning production function.

To complete the description of the learning output empirical model, we must specify

the distribution of the error terms in the learning production model. Given that we

interpret these as perturbations of the scoring and course dropping equations, a reasonable
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distributional assumption is ηκi,j,t ∼ N (0, σκ
η ) and εκi,j,t ∼ N (0, σκ

ε ).

Parameterizing the Course/Section Demand Model.

It remains is to specify a concrete distributional form for the error terms νi,j,t

capturing heterogeneity in taste. We assume these distribute νi,s,t ∼ TIEV . The resulting

conditional choice probabilities are of the standard logit form as considered below for a

student who demands a section s under instructor j in academic term t.

P(s | ai,t−1,x, t) =
exp

(
Φs,t + α0· sj(ai,t−1,xi,j,t) + α1· fj(ai,t−1,xi,j,t)

)∑
s′ exp

(
Φs′ ,t + α0· sj′ (ai,t−1,xi,j′ ,t) + α1· fj′ (ai,t−1,xi,j′ ,t)

) .
7.2 Estimation via Maximum Likelihood

Our parametrization of the model and the distributional assumptions over the error

terms suggest a simple estimation approach via Maximum Likelihood (ML). Under this

approach we could proceed by maximizing the log of the likelihood associated to our

observed data as specified in the following expression,

L(θ) =
N∑
i=1

Ti∑
t=ti,0

log

[
P
(
jt , S

κi,t

i,ji,t

∣∣∣∣ ji,τ , ..., ji,ti,0 , ai,ti,0 ,xi,ji,t,t ; θ

)]
.

where θ denotes the vector of all parameters associated to each of the courses in

the sequence K considered. In practice however, this approach faces some problems.

First, considering the estimation of parameters for all courses simultaneously might

pose numerical complications simply due to the number of these parameters. Second,

notice that since we don’t observe a student’s type except for the initial ability ai,ti,0
as measured by the entrance exam record, a student’s type increases across time. For

example, a student’s type in its second academic period can be thought as a pair

(ai,ti,0 ,xi,ji,ti,0
, ji,ti,0+1), describing the student’s initial ability, the instructor the student

is paired in its initial period t−i,0, and the vector of covariates under which such a

match takes place. Even for a modest number of courses in the sequence, the resulting

computations required to code the gradient, as required for the implementation of an

optimization routine, can be very cumbersome.

Faced with these considerations, we we opt for a sequential ML approach that involves

iterating over the different courses in K. At the κ-th iteration of the approach er estimate

the primitives θκ associated to the κ-th course in the sequence. We then use these

estimates, in particular those pertaining course κ’s production functions, to update each

student’s ability as implied by the model. The latter estimates then serve as the basis for

the κ+ 1-th iteration of the algorithm where they are taken as observed data.
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To formally illustrate this approach, let θκ denote the set of parameters associated

with the κ-th course of the sequence K. This includes both primitives of the course/section

demand model and primitives of the learning production function model. We begin by

constructing the log-likelihood based on the observed data for each student’s first two

consecutive academic periods upon enrolling in the university. For instance, if student

i enrolls in course κ = 1 for the first time in academic period t, we utilize the data

corresponding to academic terms t and t + 1 for this student. Based on this, the data

explained by the model for a student i with ti,0 = t is given by: (i) ai,t, the student’s initial

ability, (ii) ji,t,xi,ji,t,t, the student’s instructor match and vector of covariates for the first

course enrollment instance, and (iii) ji,t+1,xi,ji,t+1,t+1, the student’s instructor match and

vector of covariates for its second academic period. The average loglikelihood function

for this data can be expressed in terms of the following,

L(θ1, θ2) =
N∑
i=1

2∑
t=1

log

[
P
(
ji,t | ai,t−1,xi,ji,t,t ; θ

t
)
· P

(
S
κi,t

i,jt
, R

κi,t

i,jt
| ji,t, ai,t,x; θt

)]
.

where with a slight abuse of notation, we use t ∈ {0, 1} to refer to the student i’s

first and second academic term as opposed to the actual academic period corresponding

to these two enrollment instances. The first term inside the logarithm corresponds to

the likelihood of observing the student’s demand for the section they enroll in during

academic term t. The second factor represents the likelihood of the observed course

outcomes achieved by the student upon enrolling with a particular instructor in that

term. Given that we only consider the first two academic terms of each student, our data

contains observations solely for the first two courses in the sequence. Consequently, the

log-likelihood function provided above depends exclusively on the parameters associated

with these initial two courses: θ1 and θ2.

Implementing the sequential ML estimator for θ1, θ2 requires addressing a small

identification concern. In essence, recall that in our identification results, disentangling

the grading policy slopes (i.e., βj) and the production function images (i.e., fj(ai,t,xi,j,t))

for instructor in κ = 2 requires information on the student’s performance on course κ = 3.

However, the proposed sequential ML approach, the log-likelihood described above does

not consider such information. This limitation arises because students can potentially

reach course κ = 3 only in their third academic period, assuming they do not fail the first

two courses in the sequence. This issue persists even if we were to estimate all parameters

simultaneously, disregarding the sequential ML estimator, as it would still require the

decoupling of grading policies and learning outcomes for the last course in the sequence

considered.

To address this issue, we reparameterize the model for course κ = 2 in a way that

renders an identified model while keeping θ1 unchanged. Specifically, let’s impose the
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restriction of βj2 = 1 and cj2 for all κ = 2 instructors. This accounts to defining the

model for the second period in terms of production functions f̊j2(a,x) = βj2 · fj2(a,x)+cj2

that pool both learning output and grading policies into a single object. We denote the

resulting vector of parameters for κ = 2 by θ̊2. Importantly, notice that the resulting

model for student’s first two academic terms can be used to identify the parameters θ1 as

our identification of the κ = 1 parameters doesn’t require distinguishing κ = 2’s grading

policies from production function images. We can thus optimize the log-likelihood function

under the proposed parameterization and obtain consistent estimates for θ1, θ̂1.

Once the latter is achieved, we can transition to the second stage of the sequential

ML approach where we estimate the parameters of the second course in the sequence. To

accomplish this we use the estimates θ̂1 for the learning production functions associated to

any instructor j1. These allow us to compute estimates for the implied learning outputs

associated to each student’s first academic period match. For example, after enrolling

professor j1’s section for κ = 1, a student with an initial ability measurement of ai,0 ends

up with a new ability given by ai,1 = fj1(ai,0,xi,j1,1 ; θ̂
1) where the notation makes it clear

that we use the first step estimates in order to construct these ability estimates. At this

point we can treat ai,1, the ability estimates from the previous stage as observed data and

use them to estimate θ2 in the current stage of the algorithm. The process follows the

same steps as before: (i) constructing the log-likelihood using data from two consecutive

periods for all students upon their enrollment in a course κ = 2, and (ii) reparameterizing

the model for θ3 to account for the lack of identification of grading policies/ production

functions for κ = 3.

7.3 Estimation Results

This section introduces the main findings resulting from the estimates of the model.

The discussion is organized in terms of three main components: (i) estimates for the

average learning production function, (ii) estimates for the distribution of learning outputs

across professors, and (iii) estimates for the demand model primitives. Emphasis is

placed on the implications of the estimates over the observed student-professor assignment

and the possibility of improving such assignment via counterfactual policies explored in

subsequent sections.

Average Learning Production Function Estimates

I start by documenting the predicted average learning production function where the

average is taken across all Calculus 1 instructors. Figure 7 depicts the average learning

production outcome as a function of a student’s ability. Each panel conditions on a

different value for the vector of covariates x. For example, the second north-east panel

corresponds to the subpopulation of female students majoring in STEM fields and who
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enroll in Calculus 1 under an instructor characterized by an above average teaching load,

an above average general tenure, and a below average course-specific tenure. The x-axis of

each panel displays a student’s ability level. In turn the blue curve’s height at any given

ability level represents the average of the images for each instructor’s learning production

function according to the estimates (i.e., f̂j(a,x)). The shaded area depicts the associated

95% confidence interval.

Figure 7: Average learning production function

Notes: The first (second) panel in the first row corresponds to the subpopulation of

male (female) students majoring in STEM fields and who enroll in Calculus 1 under an

instructor characterized by an above average teaching load, an above average general

tenure, and a below average course-specific tenure. The first (second) panel in the

second row corresponds to female engineering students under below average teaching-load

instructors, below average general tenure, and below (above) average course-specific

teaching tenure.

Two key observations emerge from these plots. First, each panel illustrates significant

disparities in learning outcomes among students of varying ability levels. To put on

numbers on this claim, consider in the first panel of the upper row a student of ability

ai = 1.0, which is at the lower end of the ability spectrum. When matched to a Calculus

1 as described by the panel, such a student can anticipate an average learning outcome

of approximately 1.3 GPA points under the reference grading policy, or equivalently,
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a D grade. In contrast, a student of an ability of ai = 4.0, positioned at the top of

the distribution, achieves a learning outcome of approximately 3.8, equivalent to a B+

grade. More generally, the average learning production function is increasing relative to a

student’s ability level, and spans a wide range of distinct learning outputs. This is robust

to changes in the vector of covariates as suggested by looking at the remaining panels.

Second, factors beyond a student’s ability type influence the shape of the average

production function. For instance, while the upper row panels exhibit slightly convex

relationships, the bottom panels portray production functions under diminishing returns

to a student’s ability, as evident from the modest concavity of the average production

function. In addition, the overall height of the production function varies across these

panels. Consider for example a student with an ability of ai = 2.0. In the north-west

panel, this student achieves an approximate learning output of 2.0 GPA points under

the reference professor, while in south-east panel, its average learning output increases to

approximately 2.5.

The Distribution of Learning Outcomes Across Instructors

Gains from our reassignment counterfactual exercises depend on the existence of

teaching ability differences across instructors. To understand these differences we need to

look not at the average in the distribution of learning outcomes, but at the dispersion of

the distribution. The left panel of Figure 8 shows this by plotting various percentiles in

the distribution of learning outcomes. As before, the x-axis corresponds to the student’s

ability level. For any given ability, the images of the curves being depicted represent

percentiles in the distribution of learning outputs for a student of such ability. While the

Figure corresponds to a fixed vector of covariates, similar patterns arise when conditioning

on a different vector of covariates.

Consistent with the stylized facts reported before, non-negligible variation exists in

the learning outcomes a student can expect across different Calculus 1 instructors. For

instance, a student with an ability level of ai = 2.0 can expect an average learning outcome

of approximately 2.2 GPA points when randomly paired with a Calculus 1 instructor.

However, the range of possible learning outcomes extends from 2.0 GPA points at the 15-th

percentile to 2.5 GPA points at the 85-th percentile. The latter difference is large, being

equivalent to transitioning from a D to a C grade under the reference instructor’s grading.

The dispersion in learning outcomes becomes even more pronounced when considering

students at the higher end of the ability distribution. For example, the same percentiles

for a student with an ability of ai = 3.0 correspond to a two-letter grade jump, ranging

from 2.5 GPA points to 3.5 GPA points, or equivalently from C+ to B+ in terms of letter

scores.

The second panel of Figure 8 complements the latter by displaying the distribution
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Figure 8: Distribution of learning outcomes

Notes: Both panels correspond to a female student in a STEM major, under above

average teaching load, course tenure, and general tenure instructor.

of scoring outcomes that our randomly assigned student can anticipate. This provides

an intuitive way of incorporating differences in instructors’ grading policies into the

presentation of our estimates. To start, notice that the average score output across

instructors closely mirrors the average learning output curve in the first panel. This is

consistent with the grading policy estimates, reported in the appendix, which suggest the

average instructor’s grading policy coincides with that of the reference professor. However,

it’s worth highlighting that the spread in the scoring distribution is higher than that of

the distribution for learning outcomes. This holds true for all student ability levels and

remains robust across changes in the conditioning vector of covariates, as illustrated in

the appendix. For instance, for the student of ability ai,0 = 2.0 considered before, a move

from the 15-th percentile to the 85-th percentile in the distribution of scores corresponds

to a jump from approximately 1.6 to 2.6 GPA points.

Collectively, the estimates in Figure 8 indicate a potential source of tension for

students concerning their preferences for both learning and scoring outcomes. In other

words, if instructors associated with high-learning outcomes differ from those with

high-scoring outcomes, students will encounter a trade-off between learning and scoring

when selecting sections of Calculus 1. The ultimate choice a student makes will depend

on the weight its preferences place on each of these aspects. Before delving into the

preference side of this issue, let’s analyze this trade-off by simply documenting the extent

to which the optimal teaching and scoring instructors for a student differ, as well as the

average learning/scoring magnitudes of these differences.

For instance, consider computing the score and learning outcomes for each course

enrollment instance for Calculus 1 in our sample. We can then determine for each

41



instance the number of instructors associated with a higher scoring output than that of the

student’s optimal professor in terms of learning output. Table 3 records this information.

Each column in the table corresponds to a different integer value representing the number

of professors who would improve a student’s score, relative to the best instructor for the

student in terms of the induced learning. The data in the k-th column for a given row

is interpreted as the proportion of students within the subpopulation represented by the

row who have k score-improving instructors relative to the learning optimal professor.

To highlight variations in these score-improving opportunities across students of different

abilities, the information is shown for different quartiles of the student ability distribution.

For the population of students as a whole, a large fraction of all Calculus 1

course-enrollment instances are such that the best instructors in terms of learning and

scoring don’t coincide. For instance, across all the course enrollment instances, 90.04% are

associated to at least one score-improving instructor. Significant differences result from

considering students of different ability levels, with the highest number of score-improving

professors showing up among students at the top of the ability distribution. To some

extent, the latter reflects the higher dispersion in the scoring and learning distributions

according to the estimates.

Table 3: # of score-improving professors relative to the learning optimal professor.

# of score-improving professors

1 2 3 4 ≥5

All students 9.96 21.16 7.28 4.87 44.12

Ability Q1 16.94 21.40 10.49 6.70 26.26
Ability Q2 12.27 22.31 9.12 5.06 36.31
Ability Q3 6.25 21.79 8.39 6.88 49.81
Ability Q4 4.23 19.15 2.52 3.50 64.53

Notes: Information in the k-th column reports the fraction of students with exactly k

score-improving professors relative to the learning optimal instructor.

It is also of value to think about the magnitude of the learning and scoring differences

between the learning-optimal and scoring-optimal instructors. Intuitively, the larger the

score gap corresponding to the deviation the higher is the temptation to deviate. Table

4 considers these two differences. The first column measures the difference in learning

outcome between the learning-optimal and the scoring-optimal professor, which here is

denoted as the scoring gap. The second column constructs the difference between the

scoring outcomes of the scoring-optimal and the learning-optimal instructors, denoted as

the scoring gap. Here, the results are revealing, as in all cases the scoring gap substantially

exceeds the learning gap. To put this in context, let’s entertain a Calculus 1 student of

an average level who participates in the first-come-first-served mechanism. While opting
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for the best instructor in terms of learning involves a premium of approximately 0.24

GPA points in terms of learning, opting instead for the best scoring professor involves a

premium of 1.12 GPA points in terms of scoring.

Table 4: Learning/Scoring gap between the learning and scoring optimal professors.

Outcome gaps

Learning gap Scoring gap

First term students 0.35 1.30

Ability Q1 0.21 0.98

Ability Q2 0.32 1.11

Ability Q3 0.37 1.34

Ability Q4 0.43 1.62

Non First-term students 0.24 1.12

Ability Q1 0.17 0.79

Ability Q2 0.23 1.06

Ability Q3 0.28 1.30

Ability Q4 0.36 1.62

Notes: The learning gap is defined as the average difference between the learning output

a student obtains under the learning optimal instructor and the scoring optimal instructor

for the academic term in which the course enrollment instance takes place. The scoring

gap is the average difference between the score output a student obtains under the scoring

optimal instructor and the learning optimal instructor for the academic period of the

course enrollment instance considered.

The intuition above can also be framed in terms of the fraction of students who end

sup being paired with the learning-optimal instructor in the data. For new students, this

proportion is approximately 12.17%. Notably, this aligns with the fact that first-time

students are assigned to sections within Calculus 1 randomly, and the average number of

sections in the term when these students enroll in a course is 8.7. This corresponds to

an 11.46% probability of being randomly matched with the learning-optimal instructor,

very close to our estimate. Regarding students repeating the course, the fraction resulting

from the estimates is approximately 16.20%. While a fraction above the case of randomly

matched students, still very low.

Course/Section Demand Primitives

The key parameters of interest in our demand model are α0, representing the marginal

utility of expected scores, and α1, indicating the marginal utility of expected learning
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outcomes. Table 5 reports the point estimates and standard errors for both parameters

under Calculus 1 and Calculus 2 courses. For Calculus 1, both α0 and α1 exhibit positive

values, signifying that students assign positive weight to both learning and scores when

making course/section selections. Notably, the magnitude associated with α0 is slightly

above that of α1 suggesting students place a higher weight on the students they expect

to obtain above their pure learning outcomes.

Table 5: Estimation results - Course/section demand parameters

Calculus 1

Parameter Estimate Std. Error

α0 1.23 0.05

α1 1.20 0.10

I also highlight that these estimates indicate a substantial portion of the variation

in demand decisions can be attributed to both the scoring and learning dimensions. For

instance, when considering the other utility component, Φs,t, the average value for these

quantities among observed (s, t) pairs is -0.35, with a standard deviation of 1.78. These

values are of the same order of magnitude to the score and learning outputs for most

students in the sample.

8 Counterfactual - Dictatorial Assignment

Describing the Counterfactual Policy

Consider the problem of matching students and instructors under a dictatorial

approach. The problem can be understood in terms of a university administration that

seeks to pair students with instructors for a section of a course without considering

students’ preferences regarding their instructors. The administration’s primary goal is

to maximize the average student learning that results from the chosen assignment, as

implied by the estimates of the learning production function. I am focusing on a myopic

assignment problem in which matches are made on a period-by-period basis. This should

be contrasted with the fully dynamic version where the assignment decision in one period

considers its impact on the future pool of students seeking to enroll in the course (i.e.,

the set of students who fail or drop a course changes with different matches). The former

approach significantly simplifies the computational challenges of the problem and can

be understood as providing a lower bound for the improvements a planner can achieve
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through reassignments.

Specifically, let’s consider the university’s problem for the first course in the sequence,

Calculus 1, during the academic period t. Denoting the pool of students seeking to enroll

in a section of the course as It, the university’s objective is to select µi,s ∈ 0, 1 for every

i ∈ It. In the latter, µi,s = 1 is a dummy variable indicating that student i is assigned to

section s according to the administration’s match choice. When making these assignments,

the university is bound by the exogenous capacity constraint for each section s, ensuring

that it is not exceeded. To account for potential distributional concerns regarding the

planner’s objective, I examine various versions of the problem, differing in the weight,

ω(a), assigned by the planner to each student’s ability type. Denoting Cs as the capacity

constraint for section s and js as the instructor associated with such a section, we can

formulate the problem for period t as in the following,

max
{µi,s}i,s

∑
i∈I

∑
s∈Sectt

ω(ai,t−1)· fjs(ai,t−1,xi,js,t) · µi,s,

subject to the constraints:∑
i

µi,s ≤ Cs; ∀ s ∈ Sectt,∑
s

µi,s ≤ 1; ∀ i ∈ It.

For the period t problem, the number of active sections (i.e., Sectt) and the set of

instructors leading these sections are exogenously given. In particular, in the simulation

exercise, these coincide with the observed sections/instructor pairs for the corresponding

academic period t. Given this, I can compute the learning outputs fjs(ai,t−1,xi,js,t) for

each potential student-professor match that could result from the planner’s assignment

choice. It is easy to see that this reduces the planner’s problem to a simple assignment

problem that can be solved using standard linear programming techniques10.

After the planner chooses a specific assignment µi,si,s, learning takes place according

to the estimated production functions f̂j. In addition, students’ score outcomes and

retirement decisions are simulated by drawing from the estimated distributions for the

scoring and dropping equation’s error terms. These simulated outcomes determine the

total number of students who need to re-enroll in the course in the subsequent term (i.e.,

due to either failing or dropping a course), which together with the first-time students

observed in the data for the period t+ 1, determines It+1. The planner then repeats the

process by solving the assignment problem for students in period t+1 as described above.

Simulating the Counterfactual Policy

10The existence of an integer solution is guaranteed for assignment problems of this nature
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Figure 9 shows the outputs resulting from the reassignment exercise. Three distinct

reassignment simulations are considered, each characterized by a different weight function.

In particular, I consider a weighting function ω(a) = exp−δ·a, where δ ∈ {0.0, 0.5, 2.0}.
The first value in the set corresponds to a uniform weight, placing the same value for

all student ability types in the reassignment exercise. In contrast, the latter two assign

more weight to students with lower initial abilities, capturing a university’s potential

concern for improving learning outcomes for disadvantaged students. The first panel

illustrates the average learning output for each student’s ability level. While a dashed

line represents the average under the observed assignment, the average under each

counterfactual reassignment corresponds to a solid line. In addition, the second panel

depicts the average learning difference between the counterfactual and the observed

assignments, providing a clearer perspective on how various ability types experience gains

or losses after implementing each policy.

Figure 9: Dictatorial counterfactual - Avg. learning output

Two observations from the latter exercise can be highlighted. First, reassignments

improve average learning outcomes, with the magnitude of these gains differing across

students with varying initial abilities. For instance, consider the green curve corresponding

to the uniform weight reassignment exercise. For students with ability levels described

by ai = 4.0, the gains correspond to an increase of more than 0.20 GPA points. Students

with an ability level of 2.0 exhibit the smallest average gain, approximately 0.9 GPA

points. Naturally, as I consider exercises that assign a higher weight to students with

lower abilities, reassignment gains rise for low-ability students and decrease for high-ability

students. For instance, under the extreme case of δ = 2.0, which assigns very small weight

to students with abilities exceeding 2.0, a student with an ability level of 4.0 witnesses no

gains relative to the baseline, whereas the average learning return for a student with low

ability, such as 1.0, increases to 0.20 GPA points.

Second, I emphasize that while learning gains vary across different student ability
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types, these gains remain positive across the entire spectrum of ability. At first, this may

appear surprising, as it suggests that the university can improve average learning outcomes

for all student types without facing the typical trade-offs associated with prioritizing the

learning of one subgroup of students at the expense of another. However, the result

becomes more intuitive when considering two key factors. First, under the observed

assignment, a significant fraction of students enroll in Calculus 1 as first-time students.

Consequently, they don’t participate in the first-come-first-served mechanism and are

instead randomly assigned to sections of Calculus 1. Random assignments are prone

to generating many Pareto suboptimal pairings, allowing the planner to exchange slots

between two students, i and i′, to enhance the learning output of both. Second, even

among reassignments involving students who are repeating Calculus 1 (i.e., approximately

a third of the students in each academic term), the oversupply of instructors/slots, relative

to the total number of students demanding sections, implies there is a significant amount of

slackness in the capacity constraints of many sections under the observed assignment. This

creates many opportunities in which the planner can modify a given student’s assignment

without taking a slot away from another student to meet the capacity constraint

In trying to understand the outcomes of the exercise, it is helpful to examine how

the professor assigned to each student-ability type changes during the reassignment. To

illustrate this, consider Figure 10, which shows the conditional ability distribution of

students matched with each instructor under the uniform weight reassignment. In this

figure, each row corresponds to a specific instructor, while the columns correspond to

quartiles in the distribution of student ability. A cell associated with a given row/column

is the proportion of all students matched with the instructor represented by the row who,

upon enrollment, have an ability level belonging to the quartile specified by the column.

I have ordered the instructors lexicographically, considering the percentage of students

they enroll in each of the four quartiles (i.e., order first regarding the percent of students

in Q1, Q2, etc.).

Notably, under the counterfactual reassignment, there is a discernible specialization

in the professors assigned to students with different ability levels. This is evident from the

diagonal structure observed in the heatmap of the first panel. This should be contrasted

with the right-hand panel showing the conditional distributions under the observed

assignment. In the latter, each instructor teaches a substantial number of students in

each ability region. However, the distributions are not uniform, as the non-first-time

students can choose the section they enroll in.
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Figure 10: Dictatorial counterfactual - Within professor ability distribution

Although the reassignment is constructed with average learning outcomes as the

objective, the gains are reflected in other related variables of interest to the university’s

administration. For instance, Figures 11 and 12 depict the changes in the rate at which

students withdraw from sections of Calculus 1 and the average number of attempts

required for the successful completion of Calculus 1, respectively.

Figure 11: Dictatorial counterfactual - Course dropping rate
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Figure 12: Dictatorial counterfactual - Attempts to completion

When examining the rate at which students opt to withdraw from their Calculus 1

sections, the reassignment of students yields significant improvements. This is particularly

the case for students positioned within the mid-range of the ability distribution. As these

are typically the students at the borderline between the course dropping and not dropping

decisions, they are also more likely to change their dropping decision after experiencing

the boost in their learning outcomes from the reassignment. For instance focusing on

the uniform weight reassignment exercise, a student with an ability level of 2.0 drops the

Calculus 1 section at a rate of 40% under the observed assignment assignment. This rate

decreases to 34% under the uniform weight dictatorial reassignment.

Turning to the second plot, which illustrates the number of attempts a student

requires to achieve a passing score in Calculus 1, we once again observe notable gains

resulting from the counterfactual reassignment. For instance, let us revisit the example

of a student with an ability level of 2.0, who under the baseline requires an average

of approximately 1.75 attempts to successfully complete Calculus 1. Instead, under

the counterfactual reassignment, the same student accomplishes this in 1.3 attempts.

Substantial gains extend to various ability levels, as indicated by the right panel, with

the smallest improvements observed among high-ability students who are less inclined to

retake the course to begin with since they perform better. Nevertheless, it is worth noting

that even for such students the reassignment leads to a significant drop in the number of

attempts to completion. For example, a jump from an average of 1.21 retakes to slightly

above 1.0 retakes for students of a top ability 4.0.
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9 Conclusion

Higher-education institutions pair students with course professors using assignment

rules with poorly understood learning properties. This is relevant because match effects

in learning technologies imply that how students and professors are matched affects

the university’s learning outcomes. While other projects have explored the assignment

problem in elementary and secondary education settings, structural differences relative

to post-secondary settings hinder a simple extrapolation of these studies’ conceptual and

methodological insights. In this paper, I consider the measurement of matching effects in

higher-education learning technologies and their use in evaluating the learning properties

of assignment rules pairing students to course instructors. My empirical approach involves

constructing a structural model that describes learning outcomes and course/section

demand decisions under assumptions common to many post-secondary institutions.

Conceptually, I present arguments for identifying learning technologies in higher

education where instructors, in addition to their teaching ability, vary in their grading

policies. My proposal addresses the bias from using approaches based on within-professor

score variation, common in elementary and secondary education projects but inadequate

for post-secondary environments. In addition, I propose a novel channel through

which grading policies can impact learning outcomes by influencing students’ demand

decisions in choice-based assignment mechanisms. Both insights inform my empirical

work, demonstrating how, in my setting, learning outcomes can be improved through

reassignments that fully consider the complementarities in the learning technology. While

the empirical exercise occurs in a setting based on random and first-come-first-served rules,

the framework and intuitions discussed are general and can be applied to studying the

assignment problem in other post-secondary institutions.

Several unexplored research avenues appear particularly relevant. First, I have

considered dictatorial policies reassigning students to instructors without using student

choice. While informative about potential learning gains, the university might place

value on mechanisms allowing students choice, making the proposal infeasible. One

possible response consists of interpreting the results here as a benchmark or first best and

exploring how commonly used choice-based assignment rules can replicate the benchmark

assignment. For instance, I could simulate the learning outcomes of lottery or priority

assignment rules used by multiple universities. Understanding how these mechanisms

interact with student preferences could guide university assignment decisions without

violating the constraint of granting students choice.

Second, although significant, learning efficiency is not the sole criterion for assessing

the desirability of an assignment. For instance, universities might hold distributional

and fairness in the access to high-quality instruction concerns when choosing across
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assignment rules, concerns which I have not considered directly. Additionally, extensive

literature compares assignment rules based on student welfare and stability notions. An

interesting research avenue involves combining these perspectives into a single framework

for evaluating existing assignment rules.

Finally, in many settings, the classroom composition has a nontrivial influence over

how instructors grade students. For example, an instructor might adjust grading in

response to a section with students struggling with the material. Professors may also face

explicit score distribution targets imposed by the university. The framework I propose can

be adjusted to account for this. Furthermore, it is interesting to consider the implications

of these relative grading policies for the policy gains I document.
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10 Appendix

10.1 Entrance Exam Scores Predict Course Scores

Table 6 illustrates the distribution of letter scores conditional on a student’s initial

ability measure. In this table, the columns correspond to the scores achieved by individual

course-enrollment instances for students within the sample. The rows in the table

delineate the segments within the distribution of initial ability where each student’s

entrance exam score falls.

Table 6: Calculus 1 letter score distribution conditional on ability

Calculus 1

A B C Fail/Retire

80%− 100% 46.49 19.78 17.77 15.96

60%− 80% 27.21 20.91 23.45 28.43

40%− 60% 21.42 18.37 23.79 36.43

20%− 40% 17.60 15.74 22.42 44.25

0%− 20% 11.74 13.36 23.12 51.77

Calculus 2

A B C Fail/Retire

80%− 100% 34.31 24.43 20.93 20.34

60%− 80% 18.90 22.25 26.99 31.86

40%− 60% 13.73 20.67 26.49 39.11

20%− 40% 11.30 18.36 26.92 43.42

0%− 20% 9.27 16.56 25.86 48.31

The table reveals a positive relationship between a student’s obtained score and its

initial ability. For instance, let’s consider the case of Calculus 1. When we focus on

students in the top 20.00% of the distribution of initial abilities, they exhibit a 46.00%

likelihood of attaining a score of A. In contrast, this probability decreases significantly to

11.74% when considering students at the lower end of the ability distribution. Notably,

roughly 75.00% of students in the lower segment of the ability distribution ultimately

receive either a C grade or a score associated with course failure or withdrawal. This

pattern is mirrored in the context of Calculus 2. Here, students positioned at the top

and bottom of the ability distribution exhibit odds of 34.31% and 9.27%, respectively, for

obtaining a score of A.
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10.2 Identification Under Course Dropping

Thus far we have only provided arguments for the identification of our empirical model

in a setting where students are unable to drop sections previously enrolled. In situations

in which a non-negligible number of students choose to drop a section, ignoring this

might be problematic. Intuitively, the issue arises from the fact that all our identification

results are based on our observations of the group of students who achieve scores above

a certain threshold, denoted as sl. Yet, when students have the option to drop a course,

the researcher can only observe the fraction of students who score above sl conditional

upon not dropping the course.

Failure to account for this distinction can lead to upward bias in our estimators,

where estimates suggest that the learning returns of professors are higher than they truly

are. Moreover, depending on the relationship between grading policies and professor

productivity, this bias can result in erroneous conclusions regarding disparities in learning

returns across instructors. For instance, if students are more likely to drop a course

under the instruction of subpar professors, we run the risk of underestimating the gap in

instructional quality between a high return and a low return instructor.

We now try to extend the arguments in the previous subsection in a way that

accommodates for the truncation issue resulting when students can drop a course.

Following the same arguments used before, consider the mass of students of initial type

ai,0 = a0 who in their first academic term obtain a score of at least sl after enrolling

instructor j1’s section under the covariate vector x1. Following the discussion above,

we also condition on the subgroup of students who choose not to drop j1’s section as

otherwise we wouldn’t observe a score record for the student. Under our model, the latter

conditional probability can be written as follows,

P
(
S1
i,j1 ≥ sl | a0, x1, j1, R1

i,j1 = 0
)

=

∫
ε1

∫
η1

1
{
R1

i,j1 = 0
}
1
{
Si,j1 ≥ sl

}
fη(η

1)fε(ε
1) dη1 dε1

=

∫
ε1
1

{
ε1 ≥

sl∗ − βj1fj1(a0,x1)− cj1

σ1
ε

}[
1− Fη

[
sl − βj1 · fj1(a0,x1)− cj1 − σ1

ε · ε1

σ1
η

]]
fε(ε

1)dε1.

(1)

This expression closely resembles the one derived in our previous identification when

trying to identify the marginal student for score sl. It however differs in two crucial

aspects that complicate this interpretation. First, students (within the conditioning set)

now differ in two unobserved ways: their η1 and ε1 draws. Given that conditional on

not dropping the course, ε1 has an impact on the final score received by a student, this

means we now should think not of a single marginal student for score sl but of a marginal

student for sl under each potential draw of ε1. Our observation of the mass of student
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scoring above sl now corresponds to adding up the mass of students who score above sl

across all this different sub populations based on ε1. Figure ..., the analog to Figure ...

in the main subsection illustrates this by showing how a change in ε1 shifts the linear

function defining the marginal student. Second, the integral on the right hand side must

now reflect the fact that we only consider students who choose not to drop the course.

This is captured by the indicator term inside the integral 1{R1
i,j1 = 0}. In terms of the

graph below, this amounts to only counting the students who score above sl for some of

the ε1 sub populations, namely, those who choose not to drop the course.

sl

0

η

ε

ε
′

In practical terms, the implication is that we cannot directly invert the previous

equation to learn about σ1
η and fĵ1(a0,x1) as considered in our previous arguments. Some

additional work is required in order to accomplish this. Nevertheless, what we can do

is to identify the marginal student, not in terms of obtaining a score sl, but in terms of

choosing to drop the course. To see this, consider an expression for the mass of students

who choose not to drop j1’s section under our conditioning set,

P
(
R1

i,j1 = 0, | a0, x1, j1
)
=

∫
ε

1

{
ε ≥

sl∗ − βj1· fj1(a0,x1)− cj1

σ1
ε

}
fε(ε)dε

= 1− Fε

[
sl∗ − βj1· fj1(a0,x1)− cj1

σ1
ε

]

Inverting the expression above delivers an expression for the ε1 corresponding to the

student who just marginally chooses not to drop j1’s section of course κ = 1.

sl∗ − βj1· fj1(a0,x1)− cj1
σ1
ε

= F−1
ε

[
1− P

(
R1

i,j1 = 1, | a0, x1, j1
)]
. (2)

We can now make some progress by combining the identified expressions just derived.

In particular we can use the latter to pin down the identity of the average marginal
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student relative to obtaining a score weakly above sl. Once this is achieved, the same

steps followed in the previous section can be used to infer the the variance parameters and

the production function of at least one κ = 1 professor, namely the reference professor ĵ1.

Proposition 5 formally states and proves this claim.

Proposition 5. The image fĵ1(a0,x1) and the variance parameters σ1
η, σ

1
ε are point

identified.

Proof. Consider equation 1 describing the fraction of students (within the conditioning

set) that obtains a score weakly above sl in j1’s κ = 1 section. In particular, we consider

the case for l = l∗, the cutoff above which students obtain a pass score. By algebraically

manipulating this expression we obtain what follows,

P
(
S1
i,j1 ≥ sl∗ | a0, x1, j1, R1

i,j1 = 0
)

=

∫
ε1
1

{
ε1 ≥

sl∗ − βj1 · fj1(a0,x1)− cj1

σ1
ε︸ ︷︷ ︸
I

}[
1− Fη

(
σ1
ε

σ1
η

·
{

sl∗ − βj · fj1(a0,x1)− cj1

σ1
ε︸ ︷︷ ︸

II

−ε1
})]

fε(ε
1)dε1.

Notice that terms I and II (both of which coincide) are quantities we have previously

identified in equation 2. We can treat them as known quantities in the equation above.

Since the left hand side is also an observed quantity (i.e., crucially, this is true because the

researcher is capable of observing scores for students who don’t drop the course), we can

treat the identity above as just a function of the quotient σ1
ε/σ

1
η. Furthermore, it is easy

to see that under the region of integration considered, term II is always below ε1 which

implies that an increasing of the quotient σ1
ε/σ

1
η corresponds to a pointwise decrease of the

integrand considered in the right hand side. It follows from standard inversion arguments

that we can use the identity above to identify the true value of the quotient σ1
ε/σ

1
η.

Let’s now consider the analog to the previous expression for an arbitrary scores threshold

sl. This is given by the equation below,

P
(
S1
i,j1 ≥ sl | a0, x1, j1, R1

i,j1 = 0
)
,

=

∫
ε1
1

{
ε1 ≥

sl∗ − βj1 · fj1(a0,x1)− cj1

σ1
ε

}[
1− Fη

(
σ1
ε

σ1
η

·
{

sl − βj1 · fj1(a0,x1)− cj1

σ1
ε︸ ︷︷ ︸

θ(sl | a0,x1,j1)

−ε1
})]

fε(ε
1)dε1.

It is clear from the preceding discussion that both terms (sl∗ − βjfj1(a
0,x)− cj)/σ

1
ε and

σ1
ε/σ

1
η inside the integral term can be treated as known quantities. The key observation

is then that we can treat the right hand side as a monotone function of the quotient

(sl − βjfj1(a
0,x) − cj)/σ

1
ε and σ1

ε/σ
1
η for any score cutoff sl we entertain. We can then

follow the same arguments as in section ?? by considering the system of equations defined

by,

56



θ(sl |a0,x1, j
1) =

sl − βj1fj1(a0,x1)− cj1

σ1
η

and θ(sl′ |a0,x1, j
1) =

sl′ − βj1fj1(a0,x1)− cj1

σ1
η

.

As before, it is easy to see that by considering sl ̸= sl′ , the system above has a

unique solution in terms of quantities σ1
ε and βj1 · fj1(a0,x1) + cj1 . The former, together

with our previous identification of the quotient σ1
ε/σ

1
η, allows us to recover the variance

term σ1
η. In turn the result for κ = 1’s reference professor follows from our grading policy

normalization of (βĵ1 , cĵ1) = (1, 0) ■

We can mimic the marginal logic student logic followed in Section ?? when trying

to understand the content of Proposition 5. In doing so, it is useful to recall the main

challenges arising from the possibility of student’s dropping a course: (i) we don’t observe

the score of students who drop the course, (ii) the unobserved draw affects a student’s

incentive to drop the course. The first part of Proposition 5 shows we can easily correct

for the first issue by using our observations of who students are dropping. In other words,

we can infer who the marginal student dropping the course is and use this observation

when constructing an identity describing the marginal student obtaining a score of sl. The

second part shows that even when ε draws affect the scoring equation, for our purposes

we can focus in identifying the marginal student for a ε draw of zero.

The remainder of the argument tracks closely our previous work on Section ?? in

that we used data for the student’s performance on the second course of the sequence to

disentangle κ = 1’s grading policies and production functions. For instance, consider all

students in the conditioning set who after obtaining a pass score for κ = 1, enroll j2’s of

κ = 2 under covariates x2. We are interested in an expression for the fraction of these

students who obtain a score weakly above sl. Our model implies the following expression,

P
(
S2
i,j1 ≥ sl | a0, x1, x2, j1, j2, R2

i,j2 = 0 S1
i,j1 ≥ sl∗

)
=

∫
ε2
1

{
ε2 ≥

sl∗ − βj2· fj2(fj1(a0,x1),x2)− cj2

σ2
ε

}
×

[
1− Fη

(
sl − βj2 · fj2(fj1(a0,x1),x2)− cj2 − σε· ε2

σ1
η

)]
fε(ε

2)dε2.

Exactly the same arguments as in the preceding discussion can be applied to the κ = 2

problem. While direct inversion of the expression above is not possible, we can infer the

primitives of interest by using our observations for how many students choose to drop

j2’s section. After achieving this the results are just as those considered in Section 6 in

that we can identify κ = 1 production functions given injectivity of the κ = 2 instructor’s

production function. Below we state the result without a proof as it is identical to the
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arguments already outlined.

Proposition 6. The following identification results hold,

1. The image of the composition βj2· fj2(fj1(a0,x1),x2) + cj2 and the variance term

σ2
η, σ

2
ε are point identified,

3. Suppose that the learning production function fj2(· ,x2) is injective. Then

the image fj1(a0,x1) is point identified provided the existence of ã0 such that

fj2(fj1(a0,x1),x2) = fj2(fĵ1(ã0,x1),x2).
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